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Chapter 1

De Rham Theory

§1 The de Rham Complex on R”

Exercise (p.17). Show that the long exact sequence of cohomology groups exists and is exact.

Solution. We show that im /™ = ker ¢* and im g* = ker d”, and leave the proof that im d* = ker .

Because gf = 0, it is clear that ¢*f™ = 0 as well, so that im /™ C ker¢*. On the other hand, suppose g(#) = ¢ can be
written as ¢ = d¢(c’) for some ¢’ € C77%, so that [b] € kerg*. Pick some &’ € B7~! such that g(5") = ¢’. This is possible
because g is surjective. Now we know that

gdp(b')) =dcg(V') =«

Thus b — dp(b’) € kerg = im f. Write a7 € A7 to satisty f(a?) = b — b7. Then notice that /*([a7]) = [6+dp(b')] = [J].
Now we prove im g* = ker d”. First notice that im ¢* C ker d* because
g ([6]) = [F'db] = 0

since of course db = 0if [6] € kerd”. On the flip side, consider ¢ € C7 be in kerd*. Thus, if we choose & € B7 so that
g(b) = ¢, thendb = f(a) for some exacta = d4(a’) € A7, Let &’ = f(a’) € B?. Then we know that g(4') = 0, and so
g(b—=0") = g(b) = c. Furthermore, we know that

dg(b—b")=db—db’ =db-df(a’) =db— fd,(a") = 0.

Hence b — &’ represents a class in H7(B),and g * ([6 — &']) = [¢], as desired. o

Exercise 1.7 (p.19). Compute H},, (R? — P — Q) where P and Q are two points in R?. Find the closed forms that
represent the cohomology classes.

Solution. Weknow thatan element of H°(R*—P—Q) isjust something in the kernel of d : Q°(R?—P-Q) — Q!(R*-P-0Q),
i.e., is a locally (hence globally) constant function #. Thus H°(R* — P — Q) = R, where the cohomology class x € R is
represented by the constant function taking everything to x.

We use the integration trick to calculate A 1 Consider loops y1 and y, winding once around P and Q, respectively, as seen
in Figure 1. Then consider the map

D : ker(Q' — Q%) — R?

[-L

If w = df is exact, then fy df = f67f = 0, and so w € ker ®. Hence ® induces a map from A" to R%; we claim this map is

an isomorphism. To do so, we must show, first, that ker @ consists precisely of the exact forms (we have only shown that exact
forms are in ker @), and, second, that @ is surjective.

@w >
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Figure 1: loops for integration

Suppose w € ker @. We claim that /7 w = 0 for all loops y. Certainly if ¥ doesn’t go around P, Q, then it bounds a disk

/ w= dw = 0.
y disk

On the other hand, say y bounds the disk D, and say P € D. Say that y; bounds the disk C;. Then we know that

/ w= / dw = 0.
rn D\C

Butw € ker @ implies that /yl @ = 0, and so it follows that fy @ = 0too. Of course, if Q € D (orif Pand Q are both in D), the

argument is the same.
Now we want to show that w = df for some f. Consider

£ = [

0tox

which doesn’t contain either P or Q. Hence

This is well-defined: Suppose y and y” were loops from 0 to x. Then the integral over y — »” is an integral of @ over some loop,
which is thus zero, as desired.
We can write w as

D(sy) = 816 )X (5y) +82(% Y)Y (p)-
(We think of dy ) as “dy,.”) Then we can rewrite

X }/ }/ X
o= [ a0 des [“owado= [ @00 dor [ gy du
0 0 0 0
Using the second expression for f, we see that

0 0 *

L4

Similarly, using the first expression, we see that 5 =& (% 7). Hence

Af () =21(%) dx(xyy) +22(% y) Ay (sy) = @ (x9)>

as desired. This concludes the proof that ker @ = {exact 1-forms}.
Now we would like to show that im @ = R2. Itis enough to find closed w such that f;q w = 0and fyz o = 1. We will use

the argument principle: Consider some function f. Then

1 ’
e CJ;, ((zz)) dz = Z winding # of C around zeros — Z winding # of C around poles.
_ [

Thus, setting w = 7® dz, we see that we want f to have a zero inside y; and no zeros or poles inside y,. Of course, some

function like £ (z) = z — (something in ;) works! Hence /' = R?, as desired.
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We claim H? = 0. This proof is somewhat annoying, especially given the tools we are given at this stage, so we only sketch
a solution: First, consider the case of only one puncture, i.e., H*(R? — {0}). We would like to find an & € Q! such that
dw = f(x,y) dxdy = f(r, ) drdd. To do this, just let w be obtained by integration along radial lines:

w:(/rf(t,&)dr)dé’.
1

Now, for the case of two punctures, we have 1-forms w; and w, which look like the w defined above near P and Q, respectively.
Smoothing things out using a bump function (or perhaps a truncation function) gives the desired 1-form. O

§2 The Mayer-Vietoris Sequence

Exercise 2.1.1 (p.20). Show thatif w = 3} gsdu;, then dw = 3, dg;du;.

Solution. By linearity, it is enough to show this for w = gdu;, ... dul-q. But then we know that
dw = d(gdu;, ... duiq)

al/t' a”z‘
=d g—”...—qu...dx»
(/12]q ale @qu 7 4

dg Ou;  Ou;, ) ( 0%u; Ou;,  Ou;
= E —= co—dxi | + g L 2 —Ldxi | +... |dx; ... dx; .
Joftenly ((axf ale ax]q ’ 636]096/'1 9x;, axl'q 7 N Ia

On the other hand, we know that
Z dg
dgdﬂ] = a—x]dxjdu,l cen dlxt,'q

dg Oun,  Ou,
= Y S gy . dy,
R T

Jftseenrfq

Thus it is enough to show that

2u;, Ouy, 8%,»,1) ( oy, Pu;  Ous, ) )
g — ... +|g +... |dxidx;, ... dx; = 0.
UZ/ (( 00, 0y " O, | \" Oy 00, O, A

This is true for the same reason as in Proposition 1.4. m]

§3 Orientation and Integration

Exercise 3.1 (p.28). Show thatd7;...dT, = J(T)dy: ... dy,, where /(T) = det(dx;/0dy;) is the Jacobian determinant
of T.

Solution. Recall that T; = x;. Then

0Ty oT,
dTi...dT, = > ldy, ... T 2dy,
lyeenrlp (9)1 g : 6’)/ T ’
0x; 0x,
= Ly dy;,
ZIZ, a}'l'l a)’in I %

Ox1 0x,,
= E sgn(7) dyy...dy,,
T e S

where 7 is the permutation taking y;, to 1, and so on up to y;, to y,. This last sum, however, is exactly the determinant of the
Jacobian matrix! O
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Exercise 3.6 (p.33). Prove Stokes’s theorem for the upper half space.

Solution. Now w is an (7 — 1)-form:

W= fpdxi. . dx, 4+ fidxy . dx,.
Note that each f; is a function f;(x1, .. ., %, ). Then
0 7}
do = (i _oh

Ofn
= ced ()" 22 ) dyy . dxy,.
Ox1 0x toer () ax,l) M K

Say the condition for the upper half space is that x, > 0. Then we know that

(9 - oo =] [e] a )
/ idxl e dxn = / / T f dx1 e dxn_l dx,,.
H~ axl' 0 -0 —00 axz'

Ifi =1,...,n — 1, then we can rearrange the integrals within the parentheses so that the innermost one is

/ a_xldxz :ﬁ'(-xb cees X1, 00, Xigly e e e )ﬁt) _ﬁ(xb cees X1, 700, Xy Dy e e 7ﬁl) = 0:
—00 7

since f; is compactly supported. It follows that

d&) = (_1)71—1 (/ . / —f;l (xb vy Xp—1> O)dxl e dxn—l) = / w,
H” —00 —00 SH~

where we use the fact that H” has the induced orientationgiven by the equivalence class of the form (=1)"dx;...dx,-;. O

84 Poincaré Lemmas

Exercise 4.2 (p.36). Show that 7 : R* — {0} — S given by 7(x) = x/||x|| is a deformation retraction.

Solution. The straight-line homotopy works. O

Exercise 4.3 (p.36). Cover S by two open sets U and " where U is slightly larger than the northern hemisphere and
V slightly larger than the southern hemisphere. Then U N V is diffeomorphic to § 7=1 % R! where §” 7 is the equator.
Using the Mayer—Vietoris sequence, show that

R indimensions 0, 7,

0 otherwise.

H*(8") ={

Solution. Noticethat U ~R” =~ V', while U NV ~ 5§ 1 xRlis homotopy equivalent to S*71 An argument similar to the
one for Exercise 1.7 shows that #*(R? — {0}) is R when * = 0,1and 0 otherwise. We may thus induct and suppose that we
already know the de Rham cohomology of S -1

Now we have the following piece of the Mayer—Vietoris sequence:

S” ULV =R"LIR" uny=s"1

n+1 (>0
n [->R
n—1 (>0

~
(=]
~

~

(=]

~

(=]
-

o
e
-
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For all 7 > 7, we know that H?(S”) = 0 because the terms around it are both zero. The same holds for 7 between 2 and z — 1.
It then follows that we have an isomorphism between 77 (S*™!) and H"(S"), so H"(5") = R as desired.
On the bottom, we have another piece of the Mayer—Vietoris sequence:

2 [->0 > 0 > ..
1 [->? > 0 )0-J

0 ? > ROR )R-J

(Note that there is implicitly a row of 0’s below.) It is enough to know what the map Q°(U) @ Q°(V) — QYU N V) is.
It takes (v, 7) to 7 — w. We showed before that this is surjective: If v € Q*(U N V) is closed and if {p(/, pi } is a partition of
unity subordinate to the open cover {U; '}, then & = (—p,@, pyw) maps to w. Hence H°(5”) = R while H'(5") = 0, which

completes the proof. O

Exercise 4.3.1 (p.37). Let $” () be the sphere of radius »

) 2 2
1

X+t X =T

in R”*! and let
n+l

1 . .
w=- Z(—l)’flx,'dxl codx; .. Ay
=

(a) Write S” for the unit sphere $”(1). Compute the integral fsn w and conclude that w is not exact.

(b) Regarding 7 as a function on R**1 — 0, show that (dr) - @ = dx; ... dx,+1. Thus w is the Euclidean volume form
on the sphere §” (7).

Solution.

(a) C.erta(i;;y if /5,, w = 0, then w could not be exact by Stokes’s theorem. In particular, if @ = dy then fsn w= /65" 7=0
since 05" = 0.

However, we know that
n+l

w= (=) xdx o?a?,dxn .

We know, however, that

(-1 xdy ... 3;, codx,y = / dxi ... dx,4,
S B

which is just the volume of the (7 + 1)-dimensional ball, and so

n+l

= vol(B™*)) = 1) vol(B™*! 0,
‘/S”w D vol(B) = (n+1) vol(B™) #

=1
as desired.
(b) We know thatdr = ), %dx,-. It thus follows that

ar 1 — —
dr-w= (Z del‘) - z:(—l)Z Lesdy ... dx; . .. dx,s

1

n+l

1 or
=- > —uxdxy...dx,.
, ; axixz X1 Xn+1
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We can evaluate explicitly, however, that % = ’%, where again 7 = /xlz +oee xi ,1- But then, using 47" as shorthand
17

fordx; ... dx,.1, we see that

1 N
dr-wz—zx—‘dedV,

since of course 72 = 3 xf.

Exercise 4.5 (p.38). Show that d7, = 7.d; in other words, 7. : QF (M X R!) — Q*1(M) is a chain map.

Solution. First, we show that this is true on type (I) forms. On one hand, we know that dz, = 0. On the other hand, we

calculate the following:
md(7* ¢ f(x 1) =7 ( dg - f(xt)+ 7 ¢( fdx+ aivdt))
=7, (7r*¢ai:dt)

:¢/:gi;dt

= ¢[f (% 00) = f(x, —0)].

Both terms are 0 because / is compactly supported, which completes the proof for type (I) forms.

For type (II) forms, we have

dr. (74 - f (% £)de) =d(¢ [ flx t)dt)

]
—d¢/ f(x,z)dz+¢M ddr

o = * 0f (x 1)
a[wf(x’t)dtzlm E dt,

md(7* P - f(x t)dr) = 7. ( “dg - f(x t)dr+ ¢ fdxdt)

The Leibniz integral rule implies that

so that this expression is in fact equal to

—d¢/ [ t)dt+¢dx/ —dr

Exercise 4.8 (p.40). Compute the cohomology groups H* (M) and H; (M) of the open Mdbius strip M, i.e., the

Mébius strip without the bounding edge. [Hin#: Apply the Mayer—Vietoris sequences. ]

Solution. Because M is two-dimensional, we only need to worry about A “fori up to 2.
‘We break up the M6bius strip as shown in the

Itis fairly quick to see that % (M) = 0. On the other hand, to find /' and /°, we must understand the map 9 : R&@R —
R&R from HO(UL V) = HY(R* I R?) o H'(U N V) = H*(R* U R?). But d(w, 7) = (w — 7, w — 7), which is clearly

one-dimensional. It follows at this point that

R if*x=0,1,

0 otherwise.

H*(M)={
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A 4
A 4

P &
< <

Figure 2: A cover U U V' of the Mdbius strip.

Now for H (M), we have the following Mayer—Vietoris sequence:

M vuv unv
H? ¢ 0 < oeJ
H? L?( ROR < REBR(-J

H! L?( 0< oeJ
0

H° L 0 < 0 <
ThemapR® R — R @ Rtakesw = (w1, w2) to (= (jv)«w, (jr)«w). We check that
(fu)se1 = @1 () * w1 =
(ju)sw2 = w2 (77) * w2y = —wo,

and so d(w) = (—wi—wy, w1 —w>). In particular, im J is two-dimensional, and so 9 is an isomorphism. Hence H} (M) = 0. O

Exercise 4.10.1 (p.41). Prove that the image of a proper map is closed.

Solution. Sayf : X — Y isa proper map. Pickp € Y\ f(X) and pick a neighborhood IV of p such that IV is compact. Then
F7HN) is compact while £ (N) is open. Now f (71 (V) is compact and contained in /V. Note that this doesn’t contain p
because p ¢ im f.

Thus consider the nonempty set N — £ (£ 1 (V)). This is an open neighborhood containing p. Furthermore, its intersec-
tion with im £ is necessarily empty: If f(x) € N — £(f 1(N)), thenx € f71(NN) and so f(x) € £(f'(NN)). Henceimf is

closed, as desired. m]

Exercise 4.11.1 (p.42). Prove Theorem 4.11 (Sard’s theorem) from Sard’s theorem for R”.

Solution. Say f : M — N. Every manifold has a countable atlas, so we may consider a countable atlas { 17} for N. We
know that f~1( 1) is open in M, and so each ™! ( ;) can be trivialized by countably many coordinate charts. (For example,
letting {U;} be a countable atlas of A, let U; = f 1w N U;.) Thus we now have a countable atlas {Uj;} of M, where
fWUy) ¢ W

Let § be the set of critical points of f and let ¢;; be the coordinate map associated to U;. We would like to show that
¢:7(S N Uy) has measure zero for each pair (7 7). But we know thatp € S N Uy if and only if df, : T,M — Ty, N is not
surjective, which is in turn true if and only if d(¢; o f o ¢;‘1)¢f/(p) is not surjective. After all, we know that dy; and dg,; are
both bijective since coordinate maps are diffeomorphisms. (Here, ¢; denotes the coordinate map associated to W, € N.) We
conclude by Sard’s theorem for R” that the critical points S of / : M — NN forms a measure zero subset. O
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§5 The Mayer-Vietoris Argument

Exercise 5.5 (p.44). Prove the Five Lemma: Given a commutative diagram of abelian groups and group homomor-

phisms
va-Lsp L yc byp Lep
a [B\L Y 5 £
s A’ S B s C’ s D' > E > ...
4 fl/ 4 f2’ 4 fr 7 fz,’ 7 7

in which the rows are exact, if the maps «, §, 9, and ¢ are isomorphisms, then so is the middle one y.

Solution. This is just a diagram chase.

Exercise 5.12 (p.50). The Kiinneth formula for compact cohomology states that for any manifolds A4 and N having a
finite good cover,
H (M XxN)=H'(M)®H (N).

(a) Inthecase M and N are orientable, show that this is a consequence of Poincaré duality and the Kiinneth formula

for de Rham cohomology.
(b) Using the Mayer—Vietoris argument prove the Kiinneth formula for compact cohomology for any M and N

having a finite good cover.

Solution.
(a) Letdim M = m and dim N = . Then, for any p and ¢, we know by Poincaré duality that H" (M) = H?(M) and

that H' 7(N) = H9(N), while 2" 7™1(M x N) = HP*1(M x N). The conclusion follows from the Kiinneth

formula.
(b) Let U U V' = M. Then we have the Mayer—Vietoris sequence:
s H(UNY) > H (U)o H(V) > HH(UUV) — ...

. n—, . . . .
We tensor with 2" 7 (), where 7 is some fixed integer, to get another exact sequence. Summing over all p gives us

. @Hf’(Un Y@ H' ' (N)
=0

— |PH(V) @ HT(N)| @ |(P H! (V) @ H! T (N)
=0 =0

N @Hf((]u VY H' (N) > ....
=0

Now we have the commutative diagram

Ly PH WA HT(N) s stuff » PH (UL HT(N) > ...

Ty | B

. — S H'(UNV)XN) — H'(UXN)® H"(VXN) —> H'"((UU V) X N) —> ...

(Ididn’t copy in the stuff in the center, just because it wouldn’t fit, and also would make the diagram unreadable.) Here,
the downward mapsareall givenby ¢ : H*(M)®H*(N) — H*(MxN), whichis the map sendingw®¢ = 7*wAp*¢

for projections 7 : M X N — Mandp: M X N — N.
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First, we show that the square

@Hﬁ’(U NN @H ?(N) ——— swuff

Ty !

H'(UNV)xN) —— H"(U x N) ® H*(V x N)

commutes. To see this, fix a summand w ® ¢ € H (U NV)®H' 7(N)in the top left corner. Taking the bottom
path, we see that it is taken to

(=Gu)l7"w A p*¢l, (jr)<[7*w A p"¢]) € H*(U x N) ® H*(V X N).
On the other hand, taking the bottom path, we see that the first arrow sends & ® ¢ to

(=G (@ ® ¢), (jr)« (@ ® §)).
Now we know that
V(=)@ ®¢) = —7"(ju)w Ap'¢.

But (i) * wisjustw on U, and extends by 0 from U N V. In particular, this is exactly —(ju)« [#"w A p*¢]. The other
term follows similarly.

Commutativity of the other two squares is clear. m]

Exercise 5.16 (p.52). Let x, y be the standard coordinates and 7,  the polar coordinates on R* — {0}.
(a) Show that the Poincaré dual of the ray {(x, 0) : x > 0} in R* — {0} is d6/27 in H*(R* — {0}).

(b) Show that the closed Poincaré dual of the unit circle in ' (R* — {0}) is 0, but the compact Poincaré dual is the
nontrivial generator p(7)dr in H!(R? — {0}) where p() is a bump function with total integral 1. (By a bump
function we mean a smooth function whose support is contained in some disc and whose graph looks like a

ctbump.”)

Thus the generator of H'(R? — {0}) is represented by the ray and the generator of /! (R* — {0}) by the circle.

Solution.

(a) We would like to show that

/ - / dé
rw= w N —
ray R2-{0} 27

for every closed w. Write w = fdr + gd@. Then dw = 0 implies that z—g = a—g.

or
d o B ooaf B ooag ~ )
EL/(; f(”;é’)dr]—'/o‘ %dr—./o Edr-g(oo,&)—g((),g)_o

because w is compactly supported. Hence fooo f (7, 8)dr is constant with respect to . But then it follows that

Now we know that

27 /RZ_{O} N F(,6) drdf = /02” /Ooof(r, 8)drdd = 2 - /Omf(r, 0)dr.

AN — =
27 R2-{0}
/ z'*wZ/ f(# 0)dr,
ray 0

But of course

concluding the proof.

10
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(b) Againletw = fdr + gdf be a closed form. Then we know that

27
/z'*wZ/ ¢(1,6)dé.
st 0

We would like to show that this is equal to f w A 0 = 0. But we know that

d 27 Zﬂag Zﬁaf
Z’./o g(%é’)dﬁ—/o Edﬁ—/o %dé—f(;’,Zn')—f(r,O).

But (7, 27) and (7, 0) are the same point, so this is 0. It follows, then, that /ohg(l, 9)d6 is a constant. We may take the
limit to either » = 0 or » = co. Compact support implies that this limit is 0, which concludes the proof.

To find the compact Poincaré dual, note that we would like to show that

2w
/ ¢(1,0)dd = / o= / wAp(rydr = / g(r, 0)p(r)dbdy.
0 St R2-{0} R2-{0}

But we know from the argument above that this last term is equal to

/0 i /0 2ﬂg(r, 8)p(r)dbdr = [ /0 ) ﬁ(r)dr] . [ /0 ” < Mg]'

The first term is 1, which proves the result. ]

§6 The Thom Isomorphism

Exercise 6.2 (p.54). Show that two vector bundles on M are isomorphic if and only if their cocycles relative to some
open cover are equivalent.

Solution. We prove the forwards direction first. Suppose we have equivalent vector bundles 7 : £ — M and z’ : £/ — M.
We may certainly pick an open cover {U,} of M so that 7|y, and 7’|y, are both fiber-preserving diffeomorphisms. (To see
this, simply take trivializing open covers { ¥} and {7} for E and E’, respectively, then let the open cover in question be
obtained by the set of all possible 7, N Vé ’s.)

Letg,pand g’ 5 be the transition functions for the two vector bundles. Then

& = ($af W) © (Yay) o (Yafds "),
where the maps in question are depicted below:

E 2 / )E’

A} f_l
¢0¢ lkz

U, xR"

Thus, defining 2, = ¢af71¢;1 works.

Now we prove the backwards direction, and let {U,} be the open cover relative to which the two vector bundles are
equivalent. On E|y,, we define f : £ — E’ to be %‘12“%. This glues to a map on all of E: After all, on N (U, N Up), we
know that

Vi dabe = ¥ (ap208) e = Vi M68p>

as desired. This is also clearly fiber-preserving, hence a homomorphism. But we may similarly define a global function f -1,
E’" — Etobe 525;1)%% on each E’|y,. Since f and f ~L are inverses, it follows that £ and £ are actually isomorphic as vector
bundles. m]

1
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Exercise 6.5 (p.56).

(a) Show that there is a direct product decomposition

GL(n,R) = O(n) x {positive definite symmetric matrices}.

(b) Use (a) to show that the structure group of any real vector bundle may be reduced to O(#) by finding the 4,’s of
Lemma6.1.

Solution.

(a) This is just the polar decomposition of a matrix.

(b)
( TODO: I'm not sure how to prove this, actually.

| Exercise 6.10 (p.59). Compute Vect; (S").

Solution. Note that any vector bundle over Stis given by some ¢ : RfF — R ie., by some ¢ € GL(R¥). In particular, a
vector bundle over S! is just a (necessarily trivial) vector bundle over [0, 1] such that 771 (0) = R*and 771(1) = R¥ are glued
together in some nontrivial way. Then we claim that ¢, ¢; € GL(R¥) give the same vector bundle only when they are in the
same path component, so that Vect; (S") can be identified with the path components of GL(RY).

Note that what we really have is a pullback bundle / ~1E over the closed interval 7, where fl—-S 1 takes t > 27,

IxRE=f'E L5 E

project\L l”

I f) St
We know that F(0, v) = F(1, #(v)) for some ¢ € GL(R¥), and that F is an isomorphism on the other fibers.

Now suppose there is a path ¢, from ¢y to ¢;. Let Ej and E; be the vector bundles obtained from ¢ and ¢y, respectively.
Then consider the map Ey — Ej given by (£,3) +— (¢, © ¢51(5)) It is easy to see that this respects the gluing: Atz = 0,
this is the identity, while at # = 1, it takes (1, ¢o(9)) = (0, 2) to (1, $1(9)) = (0, 3). It follows that Ej and E; are vector bundle
isomorphic.

On the other hand, suppose there is a vector bundle isomorphism between Ey and Ej. Ignoring the fiber over 0 =1 € 1
these vector bundles are both trivial. Thus an isomorphism between Ey and E; is necessarily some map (2, 9) — (4 ¢(9)) such
that (0, (7)) = (1, ¢(¢0(?))) in E;. This automatically puts £ into the desired form, and taking ¢;to be the map such that
this isomorphism is ¢, o ¢0_1 on the fiber over ¢ gives a path between ¢g and ¢;. ]

Exercise 6.14 (p.62). Show that if £ is an oriented vector bundle, then 7., = 7.5. Hence {7.2, }aes piece together
to give a global form 7, on M. Furthermore, this definition is independent of the choice of the oriented trivialization
for E.

Solution. Certainly if w is type (I) near a point, then 7.0, = 0 = 7.wp. Suppose we have a change of coordinates 7" €
GL*(R™*") taking (%1, ..., X 15+ -5 £2) €O (V1 + -+ Yoy #1, -, #). In particular, we have T"wp = @, and T"7"7 = 7*¢.
Then

‘/Rng()’:u)du = /R” T*(g(y, w)du) = ‘/Rnf(x’t)dt

because 7" is orientation-preserving. Since applying the change of coordinates to 7wy turns the 7 into a ¢, we conclude that
Taly = Txtdg, AS desired.

That this definition does not depend on the choice of trivialization follows from the same logic, this time instead using @,
defined on U, and w defined on V. Note that the change of coordinates is still orientation-preserving since £ was an oriented
vector bundle. O

12



Jessica J. Zhang §6. The Thom Isomorphism

Exercise 6.20 (p.65). Using a Mayer—Vietoris argument as in the proof of the Rhom isomorphism (Theorem 6.17),
show thatif z : £ — M is an orientable rank # bundle over a manifold A of finite type, then

H;(E) = H ™" (M).

Note that this is Proposition 6.13 with the orientability assumption on M removed.
Solution. By the same argument as in Theorem 6.17, it is sufficient to show that

o — H(Elyay) <2 B Elyor) <— H(Ely) © HY(Ely) <— H (Eluny) <— ...

s lm lw lm

A HTPUNTY) = HT(UUY) — HTHU) @ H7HV) — H7'(UN V) $— ...

commutes.

The only difficult part is checking the left square. The form 4,7, () satisfies the property that its extension to U is
d(pym(w)). On the other hand, we know that 7.d,«’s extension to U is obtained by first extending d.» to E|y, and then
projecting down. The extension of d.w is just —d (7" pym.w) = —7* (dpy 7.w). It follows that 7,.d,» extended to U is

-7 ((7*dpy) A w) = dpym,. O

Exercise 6.32 (p.70).

(a) Show thatif §is the standard angle function on R?, measured in the counterclockwise direction, then d@is positive
on the circle S'.

(b) Show that if ¢ and & are the spherical coordinates on R? as in Figure 6.7, then dg A df is positive on S2.

Solution.

(a) We would like to show that dr A 7*d6 = drdd is positive on R* — {0}. We write everything in xy-coordinates:

dy  ydx 247 2y?
drd6 = (2xdx+ Z_yd)/) A m (7 - —x—z) = (JCZT)/Z + xZT}/Z) dxdy
This is indeed positive.

(b) Writing standard Euclidean coordinates x, y, z in terms of these spherical coordinates, we see that

dx = sinfcos ¢ dx + rcos 0 cos ¢ df — rsinIsin ¢ dp
dy =sinfsin¢ dx + rcos dsin ¢ df + rsin 6 cos ¢ dg
dx = cos @ dx — rsin 8 db.

It follows then that
dxdydz = 7*(sin 8) dxdbdg.

But * sin § > 0 because § € [0, 7], and so dfdg is positive. O
Exercise 6.36 (p.72). There exist 1-forms &, on U, such that
“dp =8 &
27 Pep = o ~ o

[Hint: Take &, = (1/27) 2y PyAPy,, where {p, } is a partition of unity subordinate to {U, }.]

13



Jessica J. Zhang §6. The Thom Isomorphism

Solution. Consider a partition of unity, as suggested. We want to show that
dpwp = ) py(dpys - dpy).
7

Since dp,p + dpg, — d@,p = 0, this is indeed true. |

Exercise 6.43 (p.75). Letw : E — M be an oriented rank 2 bundle. As we saw in the proof of the Thom isomorphism,
wedging with the Thom class is an isomorphism A® : H*(M) — H"*(E). Therefore every cohomology class on E is
the wedge product of @ with the pullback of a cohomology class on M. Find the class # on M such that

@’ = ® A 7*uin HY (E).

Solution. We want # so that T'(#) = 7*u A ® = —®?, ie., so that —# = 7, (P A D).
Recall (Equation 6.42) the explicit form of the Thom class. Thus @ A ® consists of three terms:

1. Thereisa 5
dé,
d (p(r) 5 )
term. This is equal to
’ 2 ’ 2
(ﬁﬂ drd&a) - (&) drd8,drd8,
27 27

But (drdf,)* = —(dr)?(d8,)* = 0.

2. There are two
dé, 1 N
d CO(V)E) A Z—Wd(ﬁ(”)ﬁ Zy:f’yd(loggm))

terms. Each such term is equal to

£ L, . .
oy drdf, A e (r)drm ;Joyd(loggm) +p(r)m ; dp,d(log ) |,

which is in turn equal to

1, .
o (Ndrdt, A p(r) D dp,d(loggy).
Ve

In U, with local coordinates x, ... ., x,,, we have that the above expression is just

1, dpy 0(logg},a)
F/J (V)ﬁ(i’) ; . a_xza—xjdxldx] drdd,,

where we think of x; as the coordinates on both U, and on E|y;,. (Technically, we should apply z* to the sum, so that
entire sum portion of the expression acts as the z*¢ part.) Applying 7, and summing the two terms up gives us

1 27 oo ,
ﬁzdﬂyd(loggw) /0 /0 p(r)p’ (r) drdb.

Note that the double integral just evaluates to —7, so this ends up just being

1
e 2 dpyd(log(ga)).
4

14
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3. Finally, thereisa

1

e "(rydrr* Zﬁ;/d log g, + p(r)7" Z dpyd log}/a
7

term. Note, however, that there is no & anywhere, so this term gets killed by 7.

Thus # is just equal to the Euler class ¢(E)! )

Exercise 6.44 (p.75). The complex projective space CP” is the space of all lines through the origin in C**!, topologized
as the quotient of C**! by the equivalence relation

2z~ lzforz € C*™*1 ) anonzero complex number.

Let 2y, . . ., 2, be the complex coordinates on C™*1. These give a set of homogeneous coordinates [z2y,...,2,] on CP”,
determined up to multiplication by a nonzero complex number A. Define U; to be the open subset of CP” given by
z; # 0. {Up,..., U,} is called the standard open cover of CP”.

(a) Show that CP” is a manifold.

b) Find the transition functions of the normal bundle N pi ;cp2, relative to the standard open cover of CPL.
cpl/cp P

Solution.

(a) Iskipped this first part, just because it’s pretty standard. Maybe the only hard part s to check that it is locally Euclidean,
but one can just parametrize by slopes.

(b) The standard open cover of CP! is given by the open sets Vo = {[1, 21, 0]} and V7 = {[20, 1, 0]}, with trivializations
¢ given by z;. Over Vy = Uy N CP', we have affine coordinates (21/20, 22/20). Thus 77 (V) is spanned by %
Similarly, the fibers over 7] are spanned by 90 __

9(22/21)

Ata point [2o, 21, 0], the transition function go; should should thus satisty

a i)
d(zafz0) " 0(ea)z)

i.e., we should have

_0(z/z) _ 0 ax _ oz
7 G(ealz0)  Ox 20 70

where x = 25 /2. O

Exercise 6.45 (p.77). On the complex projective space CP” there is a tautological line bundle S, called the universal
subbundle; it is the subbundle of the product bundle CP”* x @z given by

S={(6z):z€l}.

Abo ve each point ¢ in CP”, the fiber of S is the line represented by ¢. Find the transition functions of the universal
subbundle S of CP! relative to the standard open cover and compute its Euler class.

Solution. We use the standard open cover {Up, Ui} of CP'. Pick some [z9,21] € Uy N Uj. Its fiber in S|y, is given by
{1+ (1, z1)}, and similarly for its fiber in S|¢;,. Thus go; takes

A A
(z—°, 2) - ([z—°1 ,2(Z—°, 1)) = ([1, afzl, 22 (L zl/zo)) - (z—l z"—).
21 21 21 21 z20 21
Thus go; = 20/21. This is the coordinate on Uj, which we denote w. For convenience, we will denote the coordinate on Uy as
z. Note thatw = 1/z on Uy N U.

15
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Now the Euler class is ) )
- 1 - 1
o(8) = ~—d(pud (g g)) = ~5—d(pod log w)

on U}, where pg is 1 near the origin and 0 near infinity.
The same argument as in Exercise 6.44.1 shows that the integral fC (S ) = —1, where the negative comes from the fact
that we use w instead of z this time. O

Exercise 6.46 (p.77). Let S” be the unit sphere in R**! and 7 the antipodal map on S
78 (@ 0000 ) = (S ooos =pm)}
The real projective space RP” is the quotient of S” by the equivalence relation
x ~ i(x) forx € R™,

(a) An invariant form on §” is a form w such that 7" = w. The vector space of invariant forms on $”, denoted
Q*(8™)?, is a differential complex, and so the invariant cohomology H*(5”)! of S” is defined. Show H*(RP") =~
H* (S

(b) Show that the natural map H* (S M — H*(S%) is injective. [Hint: If w is an invariant form and w = dr for some
form 7 on S”, thenw = d(7 + " 7)/2.]

(c) GiveS” its standard orientation. Show that the antipodal map 7 : §* — §” is orientation-preserving for 7 odd
and orientation-reversing for 7 even. Hence, if [¢] is a generator of H”(S”), then [¢] is a nontrivial invariant
cohomology class if and only if 7 is odd.

(d) Show that the de Rham cohomology of RP” is

forg =0,
HIRP) = for0 < g <n,
a forg = n odd,

c®” e R

for g = n even.

Solution.

(a) Let [w] € H*(RP"). Write w = }, frdxy locally. Then, letting 7 : $” — RP” be the quotient map x +— {x, 7(x)}, we

have
2 (Yo du) =7 Y fidu
since 7(x) = x. This gives us a well-defined map 7* : H*(RP") — H*(S")".
Furthermore, it has inverse given by taking w € H* (5™ to the form 7 satisfying 7 (x)} = @s-
(b) The hint more or less gives it to us: If w = dz then

dr di't o w
—+ =—+-=w
2 2 2 2

Note that (7 + i*7) /2 is invariant. This shows that ker(Q*(5”)! — H*(5™)) is comprises just coboundaries.

(c) A map which swaps the sign in one coordinate is orientation-reversing. If z is odd, then 7 is obtained by composing an
even number of orientation-reversing maps, and thus preserves orientation. The case for 7 even is the same.

(d) Now H7(RP") = H1(S5")! ¢ H1(S5"), which proves that H7(RP”) =0 for 0 < g < ».
For g = 0, we know that the cohomology is R since we have a nontrivial invariant form on §”, namely (f + 7*f) /2.

For g = n, the previous part shows that there is a nontrivial invariant cohomology class if and only if 7 is odd, which
concludes the proof. m]
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Exercise 6.50 (p.79).1f f, ¢ : S — M are homotopic maps, show that H*(f) and H*(g) are isomorphic algebras.

Solution. This is a pretty standard fact, and is just an application of the five lemma using the homotopy between fandg. O

§7 The Nonorientable Case

Exercise 7.9 (p.87). Let M be a manifold of dimension 7. Computer the cohomology groups H (M), H” (M, L), and
H (M, L) for each of the following four cases: M compact orientable, noncompact orientable, compact nonorientable,
noncompact nonorientable.

Solution. We claim that we have the following table, where we incorporate the information from Corollary 7.8.1.

| 2*(M) | B (M) | H" (M, L) | H (M, L)

compact orientable R R R R
noncompact orientable 0 R 0 R
compact nonorientable 0 0 R R

noncompact nonorientable 0 0 0 R

For orientable M, we know that H” (M) = H" (M, L), and similarly for the compactly supported versions. This gives the
first two rows of the table.

On the other hand, for nonorientable A, the same argument as in Corollary 7.8.1 shows that H* (M) = H°(M, L) = 0.
Finally, we know that H* (M, L) = H>(M) and H*(M, L) = H°(M). Now H? (M) is spanned by the constant functions,
ie,isR, regardless of the compactness of . Similarly A O(M) is spanned by the compactly supported constant functions; this
isRif M is compact and 0 otherwise. This gives the final two rows. |

Exercise 7.11 (p.88). Compute the twisted de Rham cohomology H* (RP”, L).

Solution. We know that H*(RP*, L) = H'*(RP”) = H*7*(RP"). Thus we conclude that

R forg=0,
H(RP', L) = for0 <g < n,
R forg =nodd,
0 forg=neven
by Exercise 6.46, which computed the de Rham cohomology of RP”. ]

17



Chapter 2

The Cech—de Rham Complex

§8 The Generalized Mayer—Vietoris Principle

Exercise 8.4 (p.93). Suppose « < £. Then (dw). 4..... may be defined either as —(9w)......4.. or by the difference operator
formula (8.2). Show that these two definitions agree.

Solution. Say k < jwith 8 = @, > a; = 2. Then the difference operator formula tells us that

p+l
(0)ug.ips = D () s
=0
while the —(dw). ... 5.. formula gives us
k 7 ptl
GO P S Co ) PR S S C VA AP ) S C P
=0 i=k+1 i=j+1
Splitting up the first formula to be more similar to the —(dw) formula gives us
k J pl
(3“))10‘.#‘.%“&”1 = Z(_1)1wao.‘.&,u.‘ﬂ.‘.a‘.‘acpﬂ + Z (_1)lwazo‘.ﬁ.‘.&i‘.‘a.‘.aﬁl + Z (_I)Zwao‘.ﬁ.‘.a.‘.&i.‘.aﬁl-
=0 i=k+1 i=j+1

Induction on p and matching like terms gives us the result. Note that the base case p = 2 is fine, since if & < 8 then

—(0)np = wy — wp = (00)ga )

§9 More Examples and Applications of the Mayer—Vietoris Principle
Exercise 9.7 (p.104). Show that df (2) = 0. (Here f is the collating formula from Proposition 9.5.)

Solution. Expanding out, we want to show that

n n+l
5 Z(_D//K);“[ B Z K(_D;/K)z'—llgi =0. (9.1)
=0 i=1

By taking out the 7 = 0 term, we see that the first term becomes

3 Z(—D”K)l}x[ = Z(—Df(—z)"]()l'a, + dutg.
=0 =1

18
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On the other hand, the second term becomes

n+l
0K ) ()T D K (daya + D)

=1

which is in turn equal to

n+l n
K | dap + Z(—1)"_1(D"K)"_15a,4_1 ¥ Z(—1)1‘—1(0”1<)Z'—ID"%- + (—1)"(0"K)"D"an+l] .

=2 i=1

The two middle terms are just

K [zn:(_l)z ((D”K)Z§ _ (D,/K)p_lD/r) (al')l =K [zn:(_l)z's(DuK);,(ai)l

i=1 i=1
by Lemma 9.6. Thus the second term in Equation (9.1) is just

n—1
OKdey + 0K (Z(—D’S(D"K)f(m)) +K(-1)" Y (D"K)" D" a,.

=1

Notice, furthermore, that
50!0 - 5K3\do = 5[0&0 - Ksﬂo] = 921(110 =0.

Since a,41 = 0, it is therefore sufficient to show that

Z(—nf [0(D"K)’ - 0K3(D"K)"| (a;) = 0.
=1
But we know that 0K + K0 = 1, and so
N(D"K)' - 3K3(D"K) = (1-9K)((D"K)") = K&*(D"K)" =0,

since 8% = 0. This proves the result. m]

Exercise 9.10 (p.105). The real projective plane RP? is obtained by identifying the boundary of a disk (see Figure 9.5 in
the book). Find a good cover for RP* and compute its de Rham cohomology from the combinatorics of the cover.

Solution. We use the hint in Figure 9.6 of the textbook, which gives the nerve of one possible good cover. An example of a
good cover with that nerve is shown in Figure 3 below. Number the green, blue, and red domains on the left side as 0, 1, 2 and

_—

>
Do

~—~——

Figure 3: A good cover of RP? made of the six shaded domains above. (I messed up the diagram slightly; the strips
should be rotated 30° clockwise so that, for example, the red strip only intersects the red and green circles.)

on the right side as 3, 4, 5, respectively. Further, let W be the cover. Then

C°LR) =R® C'(ULR) =RY, C2(ULR) =R,
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As in the examples, we see that ker dy consists of (o, ..., ws) such thatwy = - -+ = ws, and hence is 1-dimensional. In
particular, we have ker dy = Rand im Jy = R>.

Now w € ker d; implies that wj3 — wo3 + wo; = 0, and so on. In particular, the values of w along two edges of a triangle
in the nerve (Figure 9.6) determine the value of w along the third edge. We can check, then, that woy, w13, @02, @35, w34, w12 is
enough to determine w everywhere. Furthermore, there is a linear equation which these must satisfy in order to be a valid (i.e.,
consistently defined) w.

To put it perhaps overly explicitly: Determining wo; and i3 gives wo3. Then woy give wa3. 35 gives 15, and 34 gives 24 and
25. Finally 12 gives 14 and 25, which then give 05 and 14 as part of the triangles 025 and 014. This seemingly gives ker o; = R,
but 05 and 14 must additionally satisfy a triangle equation with 045.

Hence ker d; actually has five degrees of freedom. That is to say, ker 9; = R’ and im &; = R1°.

Thus we have

Hy=R, H; =R’)R’=0, H,=R/R¥ =0y,

which is what we would expect from de Rham cohomology. O

Exercise 9.11 (p.105). Figure 9.7 (in the book) shows the nerve of a good cover W on the torus, where the arrows indicate
how the vertices are ordered. Write down a nontrivial 1-cocycle in C* (2, R).

Solution. We are looking for some # = (701, 702, . . . ) which satisfies the alternating sum relation on each triangle in the figure,
but where 7,5 cannot be consistently written as wg — @,.

Consider assigning 1 to every horizontal and vertical edge, and 2 to every diagonal edge. This gives an element 7 which is
clearly a 1-cocycle. Suppose 7 = dw. Label the vertices in ascending order from left to right, then bottom to top (i.e., 0 on the
bottom left and 20 on the top right). Now observe that

0=yn0=wr—w = (w2 —w1) + (w1 —wy) =2

This is of course not true, and so 7 is a nontrivial 1-cocycle, as desired. ]

Exercise 9.13 (p.108). Give a proof of Step 2 of the proof of Proposition 9.12 (the Kiinneth formula). In particular, this
is the following statement: Whenever a homomorphism f : K — L of double complexes induces H-isomorphism, it
also induces Hp-isomorphism.

Solution. Recall that D is the total differential D : P - kP — P ptg K?1, We know that

=n+1

@ KP1 — @ KP1

ptq=n prg=n+l

LT
@ P — @ §iz

prg=n prg=n+l

commutes. In particular, since D = & + (—1)?d and f commutes with both D and d, we know that the diagram commutes
when restricted to any given K7, and hence commutes on @ - K79 as well.

Letg : L — K be the inverse A -isomorphism. It suffices to prove that ¢ is an Hp-homomorphism, since we already
know that it is bijective.
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Consider the following diagram:

@KM @ KP

ptg=n prg=n+l

il v
id @ i L) @ i id

prg=n prg=n+l
| k
@ K1 2K @ KP1

ptg=n prg=n+l
We know that Dggf = ¢fDi = gD;f. Thus we need only be able to cancel f. But f is an isomorphism on each term. ]
§10 Presheaves and Cech Cohomology

Exercise 10.5 (p.111). Let W = {U, } e be an open cover and B = {V3}4¢; be a refinement. Let ¢, ¢ : J — I be two
refinement maps. Show that y* — ¢* = 0K + K0.

Solution. Letw € C1(W, F). Then

(" = 99) (V) = (Vbiov6,0) = (Voian-stan) -

On the other hand, we know that

(0K) (Vagyn) = 9 3 (00 (Ustao.p@rvievier)

.
2, (D (U¢(ﬁo)---)’

J=0

Il
<

I
(=]

£

where the final subscript is obtained by deleting the j-th term in ¢(8o) ... ¢(B) ¥ (8:) ... ¥(B4-1). Breaking the sum up, we
see that this is equal to

q-1 | ¢
i+ _1\iy-1 -
Z( n™ ( 5(80).-3G) .-y ) Gy n) Z( D) w(U¢(ﬁo)~-~¢(ﬂf)%(ﬂz‘)---%(@)u%(ﬂq—l)) :
=

=0 | 7=0

(10.1)

Furthermore, we know that

-1
K50 (Vi) = K2<_1>z-w )
This is just
g-1 g-2
(=D’ )@ (UMo) )
=0 7=0

The final subscript is obtained by removing all 4; terms, and then repeating ¢ and ¢ up to the j-th 4 remaining, which is ‘Ej if
J <iandis By ifj > 7. In particular, writing this out and swapping 7 and ; to be more in line with the K expression, this is
equal to

g1 [ -
_1\Y . _1\iy-1 .

Z(; Z;( D (U 4004007t * Zl( D0 (U 2000 @0-r ) | (10.2)

j= = i=j+
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Now the term U, where the subscript copies 4; and deletes j; for 7 < ; is assigned a sign (-1)"*~!in Equation (10.1) and
asign (—1)" in Equation (10.2). Thus these terms cancel. Similarly the terms for 7 > j cancel. The only leftover terms are
from Equation (10.1) where 7 = ;. If 7 = j is neither 0 nor g — 1, then this copy of U appears in both terms in Equation (10.1)
and indeed cancels. Thus we are left with

(3K + Kd)w) (Vﬁo..@,_l) =w (Uwzo‘..wﬂq_o) +(-1)*10 (U¢(ﬂo>m¢<ﬂq—1))’
which is exactly ((v* — ¢*)w) (V). .

Exercise 10.7 (p.112). Let & be the presheaf on S which associates to every open set the group Z. We define the
restriction homomorphism on the good cover U = {Up, Uy, Us } (Figure 10.1 in the book) by

0 _ 1 _
Por =Lor =1

1 _ 2 _
Pi2=r=1

2 _ 0 _
Por="Lpgp =1

where Joﬁj is the restriction from U; to U; N U;. Computer A (2, F).

Solution. The chain complex looks like

0 — 32207 237207207 —> 0 — ...

Here we use the order Uy, Uy, Us for C° and Usa, Uy,, Upy for CL.
Consider the map 8y : C! — C°. Then F(8p) : C° — C'takes (4, b,c) € F(Up) @ F(U1) ® F (Us) to

(P%z (a4, b, c),ﬁ%z (a, b, L‘),_p%)l(ﬂ, b, 5)) = (¢ —¢ a).

Similarly % (8)) takes (4, b, ¢) > (b, 4, a). Henced : CO(W, F) — CH(U, F) takes (4, b, ¢) € Z*to (c—b, —c—a, b—a) € Z°.
This homomorphism has kernel 0 and image Z & Z & 2Z. Thus H°(W, ) = 0 while #'(W, F) = Z/2. O

§11 Sphere Bundles
Exercise 11.10 (p.122). If s : M — E is a section, show that Ks* = s*K.

Solution. Notice that
% _ox % _ %%
(5 K&))zxo...xpfl = (Z Wﬁawazzg...ap,l) = Z—‘ T PaPany...zp 1+

Butsince s*z* = (7 05)* = id, we know that this is exactly equal to

§ ﬁawazxg‘.‘zx},_ly

which is by definition (K5*w),,. .« -t ]

Exercise 11.13 (p.122). Use the existence of the global angular form y to prove Proposition 11.9, i.e., that if the oriented
sphere bundle £ has a section, then its Euler class vanishes.

Solution. Lets : M — E beasection of the oriented sphere bundle. The global angular form ¢ such thatdy = —z™e, so that
e = —s"dy = —ds"y is 0 in cohomology. |
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Exercise 11.19 (p.126). Show that the Euler class of an oriented sphere bundle £ with even-dimensional fibers is zero, at
least when the sphere bundle comes from a vector bundle.

Solution. Recall that S¥* comes with an orientation-reversing differeomorphism, namely the antipodal map z : x +— —x. Call
A the map on E obtained by applying z to each fiber. Let £’ be the image of this map. Note that £” has is bundle isomorphic
to E, but with the opposite orientation. Hence e(E) = —e(E").

We claim, however, that ¢(E) = e(E’) as well. To see this, let {U,} be a good cover of M and let {c,} be generators
of H"(E|y,) with [a,] = [o3] on U,s. (Note that the 7,’s define an orientation on £, not on E’, which has the reverse
orientation.) Recall that {s,} € ¢%" in the tic-tac-toe diagram and give Euler class e(E) represented by —7*¢.

Furthermore, there is a double complex isomorphism 4™ obtained by taking [T ey, ., tO [1A4%w,,. ay (In the final expres-
sion, we suppress the restriction operation; technically 4* should be restricted to Uy, a2 .) This is a double complex homo-
morphism because pullback commutes with 4 and is linear, hence commutes with the difference operator d. Furthermore, it
is an isomorphism because A? =id.

Now applying 4™ to the tic-tac-toe diagram and thus getting a tic-tac-toe diagram for £’ instead, we see that ¢(E”) is
represented by A*(—z"¢) = —(7w 0 A)*e. But 7w 0 4 = 7, and so ¢(E”) is represented by —7z*¢ too, as desired. O

Exercise 11.21 (p.126). Compute the Euler class of the unit tangent bundle of the sphere S* by finding a vector field on
S* and computing its local degrees.

Solution. Embed S* in R¥*! and consider the vector field of S* given by

DPopk P/e 1Pk
e+l e+l

Wy =Wipo.p) = =1 =p)].

Then clearly V}, is tangent to § k at p since

>

Wy-p

—p +1(1 —p2) = pe(L=pp) = pr(1 = pp) + po(1 = pi) = 0.

Then let Vs be the unit vector in the direction of W, namely Vy= W”” To write this even more explicitly, note that
)

( _p)Z _p/i zl_Ple
A+p)>  l+p

Pi( _Pk)
(+p)?

Note that VP is defined everywhere on Sk except when p; = —1, i, at the south pole §' = (0,...,0,-1), and when
|7, = 0. This last condition occurs exactly when p; = 1, i.e., at the north pole N = (0,...., 0, 1).

Hence it is sufficient to calculate the local degrees at N and .S. We will do the calculation for S.

Let D, be the disk at S consisting of all points of S* whose final coordinate is —1 + ¢. Then the local degree at S is given by
the degree of the map f : D, — S*1 which takes p = (po, ..., pr-1, —1+¢) € D, to V, € SEL

1,11 =

Note. A prioti we only know that V, € S%. But, if 2 € 0D, then we know that p;, = —1 + ¢. Hence the final coordinate
of V, forp € 4D, is

1-
(1-p#) gz
(1 =pe)/ (1 +pr)
on D,. This is of course fixed, so we can consider V', € S*1in fact. Note that the first coordinates of V, give a vector in

RF which is distance V1 +¢2 —2e =1 —¢ = || from the origin. Thus, when we consider 7, € S we actually scale
these coordinates by 1/(1 — ¢).

Let o be the standard volume form of S¥~1, namely

&.

-1
(- 1)/x]dx0 dxj. . dxy.

~.
Il
(=1
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Then we know that

[ ro= In S (1G5 )30 ). 5y )51 o)

zj()

Bug, forj =0,..., k — 1, notice thatﬁ = x o f is simply
P |L+p _ ke 1 b

+1 \1- '

2 ~ Pk I 7 Pk 1-p?

/fa’—/ Pf —dp,...dp,...dpps.
oD, ango ]’)

Hence it follows that

Now we must calculate the volume form  on D,. But notice that D, embeds into S* via

i(ag,...,ap-1) = (ag4/1 —pz,...,ak_l 1 —pﬁ,pk),

where p, = —1 + ¢. It follows that the volume form, using coordinates (x, . . ., 4;) for St e RF s just

k

w = Z(—l)/aj-dao...%...dak_l = Z(_l)j
/ 7 1-p;

X dxo...dx;... dxgy.

Hence the integrand of /™o around a disk centered at the south pole S is exactly the generator of the top cohomology. The

local degree at S is therefore 1.

Similarly, we can calculate that the local degree at N is 1. Thus the Euler number is 2, and the Euler class is twice the

generator.

the induced map on the cohomology H7(M). The Lefschetz number of f is defined to be
L(f) = Z(—nq trace HY(f).
4
Let I" be the graph of f in M X M.
(a) Show that

[om=z.

(b) Show that if  has no fixed points, then L(f) is zero.

maultiplicity of the fixed point P to be
op = sgndet((Df)p — I).

Show that if the graph I' is transversal to the diagonal A in M X A, then

L) = ) om,

P

where P ranges over the fixed points of /.

Solution.

24
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Exercise 11.26 (p.129). Let f : M — M be a smooth map of a compact oriented manifold to itself. Denote by H7(f)

(c) At a fixed point P of £, the derivative (Df)p is an endomorhpism of the tangent space TpA. We define the
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(a) Firstnote thatz, satisfies

ok
/zw=/ 2N/
A MxM

forany win H”(M). Here n = dim M and 7 : A — M X M is the inclusion. Since yr € H” (M), we know that

/77F = / ;7F A }7A — (_1)(d6g77r)(d3g7A) / 77A A 77F-
A MxM MM

Using the explicit formula for 7, and letting 7 : I' — M X M be the inclusion, we see that the integral of 7, A yr is

‘/F‘]*VA — ‘/F‘]* [Z(_I)degwiﬁ*wi Aﬁ*Ti] — Z/F‘(_l)degw[j*ﬂ'*wz’ /\]diﬁ*'z'z"

Note that/*z* = id while j*p* = /™. Furthermore, since deg yr = deg 7, = 7, we have that
[r=c0r Y, [cvsssmnss
A — Jr
Each f*7; is a linear combination }; ¢;;7;. Then

/a),~ /\f*Ti:/Za)i/\c,-jTj:cz'l'
r r 7

because the ’s and s are dual bases. In fact, because 7z = deg w; + deg 7;, we have

/A = (-1)" Z(—l)degwfcﬁ = (-1)"* Z(—l)deg% = Z(—l)deg%.

Now recall that ¢;; is the coefficient of 7; in f™7;. Thus if we take all the 7;’s of degree g, then we get (—1)7 trace H7(f).
Summing over all ¢, i.e., over all 7;, gets us the desired equation.

L(f)=/77r=/ 77r/\;7A=/ 7o
A MM MM

where we suppress all the pullbacks by inclusions. But I"and A don’t intersect, so this is 0.

(b) Recall (Equation 6.31) that

(c) Using the explicit formula for the Poincaré dual, we have

/ yr = / J+Onr-
A A

Since I" and A are transverse, we know that NI = T'A. Thus integration is just integration along the fiber.

Furthermore, we know that the integral fA yr = / rsag T2 and yrna is 0 outside of the intersection points I N A.
Thus itis sufficient to find the integral in arbitrarily small neighborhoods around the intersection points, i.e., to find the
integral along the fiber over p € I' N A. Whether this integral is +1 depends on its multiplicity, proving the result. O

§12 Thom Isomorphism and Poincaré Duality Revisited

Exercise 12.6 (p.133). Let 7 : £ — M be an oriented vector bundle.
(a) Show that z*¢ = @ as cohomology classes in H* (E), but not in A, (E).
(b) Prove that ® A ® = ® A z*¢in H, (E).

v

Solution.
(a)
(b) o
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Exercise 12.9 (p.137). Show that  and ¢ in the proof of Proposition 12.1 are well-defined.

Exercise 12.10 (p.138). Let CP” have homogeneous coordinates 2o, ...,2,. Define U; = {z; # 0}, so that A =
{Up, ..., U,} is an open cover of CP”, although not a good cover. Computer H*(CP”) from the double complex
C* (U, Q). Find elements in C* (W, Q*) which represent the generators of H*(CP”).

Exercise 12.11 (p.138). Apply the Thom isomorphism (12.2) to compute the cohomology with compact support of the
open Mébius strip (cf. Exercise 4.8).

Exercise 12.12.1 (p.140). Show that the definition of 7 in the proof above provides a homotopy operator for the compact

Mayer—Vietoris sequence (12.12). More precisely, if w is in P Qj(Uao...ap) and
ptl
(Kw)ao...ocp+1 = Z(_l)l_joa,'wao...&lv,.,acl,.,.p
=0
then
0K + Ko =1.

Exercise 12.16 (p.141). By applying Poincaré duality (12.15), compute the compact cohomology of the open M&bius
strip (cf. Exercise 4.8).

§13 Monodromy

Exercise 13.6 (p.152). Since H; of the double complex C* (712, Q*) in Example 13.5 has only one nonzero row, we
see by the generalized Mayer—Vietoris principle and Proposition 12.1 that

H*(S") = Hy {C* (w7 W, Q") } = H;H, = H* (0, H).

Compute the Cech cohomology A* (W, ) directly.

Exercise 13.8 (p.152). As in Example 13.5, with 2 being the usual good cover of S,
H*(RY) = Hp{C*(z7 "W, Q")} = HyHy = H* (W, H").

Compute H* (U, H) directly.

Exercise 13.10 (p.153). Let X = S* A $2. Find the homotopy type of the space £ defined by
E=XXI/(%0)~ (s(x),1),

where s is the deck transformation of the universal cover X which shifts everything one unit up.
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