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My goal in this paper is to explain (in somewhat loose, intuitive terms) the relationship between
knot Floer homology and grid homology. In particular, we begin by presenting the original definition
of knot Floer homology. This original definition involves fixing a Heegaard diagram of a knot, then
counting so-called pseudo-holomorphic disks. After defining the simplest version of knot Floer
homology, we define grid homology and, in doing so, show how it can be seen as the knot Floer
homology of a particular Heegaard diagram where the surface is a torus. While many of the
statements here are mentioned without proof, my hope is that this gives some sense of how the two
homology theories are related.

1 Knot Floer homology

1.1 Heegaard diagrams

Consider a Morse function f : X → R, i.e., one whose critical points are all nondegenerate on some
3-manifold X. We may ask that f is self-indexing so that f(p) = index(p) for each critical point p.
We may also ask, if X is connected and has no boundary, that f has a unique index-0 and index-3
critical point. Let Σ = f−1(3/2) be some level surface in between the index-1 and index-2 critical
points. It separates X into two pieces U0 = f−1((−∞, 3/2]) and U1 = f−1([3/2,∞)). If Σ has
genus g, then there will be exactly g index-1 and g index-2 critical points.

Suppose X has some Riemannian metric so that, in particular, the gradient vector field ∇f
makes sense. Then consider the trajectories of −∇f . As seen in Figure 1, there are g red circles
on Σ, each of which bound a disk in U1. These red circles are the points of Σ that flow backwards

Figure 1: Getting a Heegaard diagram from a Morse function

to an index-2 critical point. Similarly, there are blue circles on Σ, bounding disks in U0, which
flow down to an index-1 critical point. All other points flow up to the index-3 critical point at
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the top, and down to the index-0 critical point at the bottom. Because of this, we know that the
complement of the red disks in U1 is just a ball, and similarly for the complement of the blue disks
in U0.

Now consider some points z, w ∈ Σ which are not contained in either the red or blue curves.
By following the gradient flow up and down to the index-3 and index-0 critical points, respectively,
we get a knot K in X. This knot intersects Σ exactly at z and w.

When X = S3, then we call this a doubly-pointed Heegaard diagram of the knot K ⊂ S3. In
particular, a doubly-pointed Heegaard diagram satisfies the following properties:

• There is a surface Σ ⊂ X = S3 with genus g ≥ 0 which separates S3 into two handlebodies
U0 and U1. (We ask that Σ is oriented as the boundary of U0.)

• There are collections α = {α1, . . . , αg} and β = {β1, . . . , βg} of pairwise disjoint, simple
closed curves on Σ. The αi’s bound disks in U0, while the βi’s bound disks in U1. The
complement of the αi-disks in U0 is a ball Bα, and similarly the complement of the βi’s in U1

is a ball Bβ.

• There are distinct points w and z disjoint from the αi and βi’s.

This is a Heegaard diagram for a knot K ⊂ S3 if K∩Σ = {w, z}, where the intersection is positively
oriented at w and negatively oriented at z. Furthermore, we ask that K ∩ Bα and K ∩ Bβ are
intervals.

It turns out that any knot can be represented by a doubly-pointed Heegaard diagram. However,
we will want a more general version, known as multi-pointed (or 2k-pointed) Heegaard diagrams.
Such a diagram is denoted H = (Σ,α,β,w, z). In this case, we still have a surface Σ of genus g.
However, our collections α and β each contain g + k − 1 curves, where k ≥ 1. The complements
are now the union of balls Bα

1 , . . . , B
α
k and Bβ

1 , . . . , B
β
k , respectively. Furthermore, we now have

sets w = {w1, . . . , wk} and z = {z1, . . . , zk} of points on Σ which correspond to the positively and

negatively oriented intersection points of K∩Σ, respectively. We ask that each K∩Bα
i and K∩Bβ

i

is an interval.

1.2 The knot Floer complex

At this point, we can briefly give some of the definitions of knot Floer homology. Let d = g+ k− 1
be the number of α-curves on Σ. Then define

Symd(Σ) = Σd/Sd,

where Sd acts on the Cartesian product Σd by permuting factors. Within the 2d-dimensional
manifold Symd(Σ), we may define the d-dimensional tori

Tα = α1 × · · · × αd, Tβ = β1 × · · · × βd.

(Technically Tα and Tβ are the projections of these products onto Symd(Σ).)
It turns out that we can equip Symd(Σ) with a complex structure such that Tα,Tβ are totally

real tori. In this setting, we can define something called the Lagrangian Floer homology of (Tα,Tβ).
Roughly speaking, the complex in question is generated by the points x ∈ Tα ∩ Tβ, while the dif-
ferential is obtained by counting so-called pseudo-holomorphic disks in Symd(Σ) whose boundaries
are on Tα and Tβ.

First, we briefly describe the complex structure on Symd(Σ). We consider Σ to be a Riemann
surface. Then Symd(Σ) = Σd/Sd inherits a complex manifold structure from Σ. Loosely speaking,
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the local image is as follows: A small neighborhood in Symd(Σ) looks like a small neighborhood in
Symd(C) since Σ locally looks like C. But Symd(C) ∼= Cd thanks to the fundamental theorem of
algebra; in particular, a degree-d polynomial in C is uniquely determined by an unordered d-tuple
of roots, which belongs to Symd(C), or by an ordered d-tuple of coefficients, which belongs to Cd.

This complex manifold structure induces an almost-complex structure J on the tangent bundle.
The tori Tα,Tβ are then totally real in the sense that J(TxTα) ∩ TxTα = 0 for each x ∈ Tα, and
similarly for Tβ.

As for the generators of the complex, note that any point on Tα ∩ Tβ corresponds to a d-tuple
of points in the intersections αi ∩ βi for i = 1, . . . , d. We may assume that the α- and β-curves
intersect transversely, so that there are finitely many points of intersection Tα ∩ Tβ.

Say x,y ∈ Tα ∩ Tβ. Consider the set π2(x,y) of homotopy classes of disks u : D2 → Symd(Σ)
with u(−1) = x, u(+1) = y, and u taking the lower half of the boundary ∂D2 to Tα and the upper
half to Tβ. If φ is some class in π2(x,y), then a pseudo-holomorphic representative for φ is a disk

Figure 2: A pseudo-holomorphic disk

u with φ = [u] which satisfy the nonlinear Cauchy–Riemann equations for some path J = (Jt) of
almost-complex structures.

Now consider the moduli space M(φ) of pseudo-holomorphic representatives for φ. There is
an associated Maslov index µ(φ) ∈ Z. It turns out that M(φ) is actually a smooth manifold of
dimension µ(φ). Since we are interested primarily in counting distinct pseudo-holomorphic disks,

we quotient out by the automorphisms of D2 which fix ±1. In particular, we get a space M̂(φ) of
dimension µ(φ)− 1. When µ(φ) = 1, this is just a discrete set of points. It turns out that it is also

compact, however, and so it is finite, and we can count it. We now have a count #M̂(φ) ∈ Z/2 of
pseudo-holomorphic disks. (If one accounts for sign, we can actually count this in Z instead.)

Each basepoint v ∈ {wi, zi} gives us a (2d − 2)-manifold Rv = {v} × Symd−1(Σ) ⊂ Symd(Σ).
If φ ∈ π2(x,y) for intersection points x,y ∈ Tα ∩ Tβ, then we define nv(φ) to be the intersection
number (in Z/2) between φ and Rv.

At this point, one may define a bigrading on this complex, consisting of the Maslov grading and
the Alexander grading. We will skip this part in this write-up, and continue on to defining the knot
Floer complex in the case of crossing no basepoints.

1.3 The knot Floer complex, crossing no basepoints

There are several versions of the knot Floer complex, which correspond to different ways of keeping
track of pseudo-holomorphic disks. We only introduce the simplest one, which is where we only
count pseudo-holomorphic disks that don’t pass through any of the basepoints wi, zi.

In particular, the complex C̃FK(H) of a Heegaard diagram H is generated as a Z/2Z-module
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by the intersection points x ∈ Tα ∩ Tβ. Given x ∈ Tα ∩ Tβ, we define its differential to be

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

µ(φ)=1,nzi (φ)=nwi (φ)=0

#M̂(φ) · y.

Because µ(φ) = 1, we know that M̂(φ) is 0-dimensional, and hence contains finitely many points.
Of course, we have not defined the Maslov and Alexander gradings, but it turns out that the
differential preserves the Alexander grading and drops the Maslov grading by 1.

It turns out that ∂2 = 0, so this does indeed define a complex. We denote its homology

H̃FK(H). It turns out that the bigrading from the Maslov and Alexander gradings descends to

homology, so we write H̃FKd(H, s) for the part of H̃FK(H) with Maslov grading d and Alexander
grading s.

If the Heegaard diagram is doubly pointed, i.e., if k = 1, then we denote the complex ĈFK(H)

and the homology ĤFK(H).

Theorem 1.1. The bigraded Z/2Z-module ĤFK(H) is an invariant of the knot K ⊂ S3. In

particular, we may write ĤFK(K) instead.

In the case of multi-pointed Heegaard diagrams, we have the following theorem instead.

Theorem 1.2. Let V be the bigraded Z/2Z-module freely generated by an element in bidegree
(−1,−1) and an element in bidegree (0, 0). Then, with k the number of w-basepoints in the Heegaard
diagram H, we have

H̃FK(H) = ĤFK(K)⊗ V ⊗(k−1).

As mentioned before, by choosing suitable orientations and counting everything with sign, we

can make H̃FK(H) an abelian group, instead of just a Z/2Z-module.

2 Grid homology

We now turn to defining a combinatorial version of knot Floer homology known as grid homology,
though we again only do it in the simplest version. A planar grid diagram G of size n is an n× n
grid in the plane with X- and O-markings such that each row and each column contains exactly
one X and exactly one O. To get from a grid to an oriented knot (or link), draw horizontal lines
between the two marked squares in each row and vertical lines between the two marked squares in
each column, as seen in Figure 3. At each crossing, we ask that the vertical segment goes over the

Figure 3: Getting a knot (here, a trefoil knot) from a grid

horizontal segment. We orient the knot so that we go from X to O in the columns, and from O to
X in the rows. It turns out that any knot can be put into a grid diagram.
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In grid homology, we prefer to think of these grids as toroidal grid diagrams, so that we glue
the top and bottom edges, as well as the left and right edges. Any n × n toroidal grid diagram
can be cut up into n2 different planar grid diagrams; all these planar grid diagrams turn out to
give isotopic knots. Connecting this back to knot Floer homology, we see that the vertical and
horizontal lines correspond to α- and β-circles on the Heegaard surface Σ = S1 × S1. The O- and
X-markings correspond to the w- and z-basepoints.

Now the generators x ∈ Tα ∩Tβ are simply ways to put dots on the vertices of the grid so that
there is one dot in each row and each column. That is, we choose points so that there is one on
each αi and one on each βi. Any such arrangement of dots is called a grid state. The set of all grid
states associated to a grid G is denoted S(G).

At this point, to continue our combinatorial construction, it is important to understand how we
may count the pseudo-holomorphic disks between two grid states x and y using only the grid itself.
First, suppose x and y are grid states. Then a rectangle between x and y is a rectangle in G, as
seen in Figure 4, whose edges are on the horizontal and vertical gridlines such that the bottom left
and top right corners are in x, while the bottom right and top left corners are in y. Furthermore,
we ask that the other n− 2 points of x and of y are the same.

Figure 4: A rectangle on a grid diagram between x, which consists of the black and gray
dots, and y, which consists of the white and gray dots.

Because these grid diagrams are toroidal, our rectangles can wrap around, as seen on the right
side of Figure 4. If the interior of the rectangle contains no other dots in the grid state x (or,
equivalently, in the grid state y), as in the left side of Figure 4, then we call it an empty rectangle.

We denote the set of all rectangles between x and y to be Rect(x,y), while the set of all empty
such rectangles is Rect◦(x,y). Each empty rectangle r ∈ Rect◦(x,y) has an associated φ ∈ π2(x,y).
In fact, it turns out that every φ ∈ π2(x,y) with Maslov index 1 has an empty rectangle as its
underlying domain, while the number of pseudo-holomorphic representatives of each r ∈ Rect◦(x,y)
is odd. This implies that the differential operator in knot Floer homology is equal to the following
differential operator:

∂x =
∑

y∈S(G)

∑
r∈Rect◦(x,y)
Oi(r)=Xi(r)=0

y,

where Oi(r) (respectively, Xi(r)) is 0 if the i-th O-marking (respectively, X-marking) is contained
in the interior of r and is 1 otherwise. (We can just label the O- and X-markings in any order from
1 to n; note that Oi(r) and Xi(r) correspond to nwi(φ) and nzi(φ).)

The fully blocked grid chain complex G̃C(G) is the Z/2Z-module generated by all n! possible
grid states, and whose differential is given by the equation above. The fully blocked grid homology
G̃H(G) is just the homology of this complex.

It turns out that there is also a combinatorial way to define and calculate both the Maslov
and the Alexander grading; we do not do so here, but using this one can show that G̃H(G) and
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H̃FK(H) are indeed the same, where H is the Heegaard diagram represented by the grid G.
Then Theorem 1.2 implies the following:

Theorem 2.1. If G is an n× n grid of a knot K, then

G̃H(G) = ĤFK(K)⊗ V ⊗(n−1),

where V is the same bigraded, rank two Z/2Z-module as before.

There is in fact a purely combinatorial way to write H̃FK(K), known as the simply blocked

grid homology ĜH(K) of K. For this homology, the differential counts rectangles which may not
contain any X-markings and may not contain the n-th O-marking, but may contain any of the
other O-markings.
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