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Abstract. In 2000,Mikhail Khovanov introduced a categori�cation of the famous Jones polynomial. This

categori�cation, now known as Khovanov homology, is an invariant of knots and links. Its construction

involves building a so-called “cube of resolutions” of a diagram of a knot, and then applying a certain topo-

logical quantum �eld theory (TQFT) to the cube; di�erent choices of TQFT give rise to di�erent variants

of Khovanov homology. In this paper, we describe the construction of the chain complex, verify invari-

ance of the resulting homology, and apply two di�erent TQFTs to de�ne two link homologies: Khovanov

homology and a well-known variant called Lee homology.

1 The Khovanov chain complex
Let L be a link, and D some diagram of L. Number the crossings of D from 1 to k. Each crossing may

be resolved, or smoothed, in one of two ways, as seen in Figure 1. If we resolve all of the crossings of D,

Figure 1: A crossing may be 0-smoothed or 1-smoothed. (Figure from [5].)

then we get a crossing-less diagram, i.e., a union of disjoint circles in the plane. We call such a diagram a

resolution or smoothing ofD. We label these smoothings by k-tuples of 0’s and 1’s. In particular, the tuple
v = (ε1, . . . , εk) ∈ {0, 1}k corresponds to the smoothing where the i-th crossing is εi-smoothed. There are

thus 2
k
many smoothings ofD. We denote the smoothing corresponding to v asDv, andwrite |Dv | =

∑
εi .

We consider these smoothings to be the “vertices” of the k-dimensional cube [0, 1]k. As with a usual
cube, we draw an edge between two vertices if and only if they are identical in all but one coordinate.

For example, we would connect the vertex (0, . . . , 0) with the kmany vertices e1 = (1, 0, . . . , 0), . . . , ek =
(0, . . . , 0, 1). In other words, we connect the smoothing consisting of all 0-smoothings with the k many

smoothings ofDwhich have exactly one crossing which is given a 1-smoothing. If there is an edge between

v and w, then |v| = |w| ± 1. We direct the edge to go from the vertex with smaller norm to the vertex with

larger norm. In particular, if there is an edge from v tow, then |v| = |w| − 1. We write the head v of an edge
as h(e), and its tail w as t(e).

Each edge e goes from one smoothing to another, that is to say, from one union of circles to another.

Furthermore, the only di�erence between the two vertices of e is that one of them has some crossing 0-

resolved, and the other has it 1-resolved. Thus the two vertices di�er only in the neighborhood of a crossing.
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Jessica J. Zhang Section 1. The Khovanov chain complex

If e goes from v to w, then consider the cobordism which is the identity cobordism (Dv − N ) × I =
(Dw − N ) × I away from this neighborhood N , and which looks like the left side of Figure 2 in this

neighborhood. We call this cobordism Se : Dv → Dw; it looks like one of the diagrams on the right side of

Figure 2: The standard cobordism from a 0-smoothing to a 1-smoothing is depicted on the left.

(Note that we draw our cobordisms from bottom to top.) When combined with the product

cobordism on the rest of the smoothing, we get one of the two diagrams on the right. In the �rst

case, we call the cobordism a “split”; in the second, we call it a “merge.”

Figure 2, along with a cylinder for each remaining circle in the resolutionDv.
Geometrically, we thus have a cube of resolutions whose vertices are unions of circles obtained as

smoothings ofD and whose edges are cobordisms between these smoothings.

The Khovanov complex is now obtained by applying a (1+1)-dimensional TQFT F to this cube. In

particular, we consider the category Cob whose objects are closed 1-manifolds (i.e., unions of circles) and

whosemorphismsHom(v, w) are 2-dimensional cobordismswhose boundary is v∪(−w). ATQFT is then

a functor from Cob to the category of vector spaces. (In our case, our vector spaces are Q-vector spaces.)
More concretely, we replace each vertex v in the cube by a vector spaceF (Dv), and an edge e : v→ w by a

vector space mapF (Se) : F (Dv) → F (Dw).
It turns out that applying such aTQFTgives rise to a link homology theory. In particular, let the group

CKhF (D) be the direct sum
⊕

F (Dv) over all smoothings v. Where it is unambiguous, we write CKh

instead of CKhF . This group comes with a natural di�erential, de�ned as follows. First, if e is an edge

from v to w, then v and w only di�er at one crossing, say the i-th one. Then de�ne s(e) to be the number

of crossings from 1 to i which are 1-smoothed in v (or, equivalently, in w). For example, if e goes from
(0, 1, 1, 0, 0) to (0, 1, 1, 1, 0) then i = 4 and s(e) = 2. Now we may de�ne the di�erential d to be the map

taking x ∈ F (Dv) to ∑
{e:h(e)=v}

(−1)s(e) (F (Se)) (x) ∈
⊕
{e:h(e)=v}

F (Dt (e) ).

The di�erential always maps a vector x belonging to a smoothing of norm k to a linear combination of

vectors belonging to smoothings of norm k + 1. In particular, this gives rise to a homological grading on

CKh. In keeping with convention, rather than de�ning the homological grading of x ∈ F (Dv) to be |v|,
we de�ne it to be gr(v) ≔ |v| − n−, where n− is the number of negative crossings inD.

At this point, we must prove that this de�nition does indeed give a chain complex.

Proposition 1. We have d2 (x) = 0 for every element x ∈ CKh(D),
Proof. Suppose x ∈ F (Dv). It su�ces to show that, for every uwhich swaps exactly two 0-smoothings in

v for 1-smoothings, the component of d2x inFu is zero. But this component is composed of two di�erent
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pieces. In particular, suppose without loss of generality that v = (0, 0, v′) and u = (1, 1, v′). Then there is a
piece of d2xwhich factors through the smoothingw1 = (1, 0, v′), and another piece which factors through
w2 = (0, 1, v′). We would like to show that these factors cancel each other out.

Notice that, ignoring signs, the cobordisms are the same. After all, geometrically, the cobordisms from

v to w1 and from w2 to u are identical, as are the cobordisms from v to w2 and from w1 to u. Hence if we

call the former A and the latter B, we only claim that AB = BA. This is true because the cobordisms are

disjoint. Geometrically, this is described in Figure 3 below.

Figure 3: Up to sign, the two cobordisms from v to u are identical, and hence give the same map

under the TQFTF . (Figure from [2].)

On the other hand, the two cobordisms are given opposite signs: From v to w2 to u, the sign is +1, as
there is never a 1 to the left of the coordinate which is being changed. On the other hand, from v to w1 is

again a positive sign, while w1 to u is a negative sign, since the second coordinate is changed but the �rst
coordinate already is 1-smoothed. Hence the cobordism passing through w1 is given a negative sign. This

implies that d2 is identically zero, as desired. �

Thus wemay take homology to get a homology KhF (D). (Technically, since d increases the homolog-

ical grading, we are really taking cohomology.) We claim that this is a link invariant, as long as we impose a

few conditions onF . In particular, we ask thatF satisfy the so-called S, T , and 4Tu conditions.
To de�ne these relations, �rst notice that a closed surface can be thought of as a cobordism from ∅ to

∅. Furthermore, the TQFT takes the empty set to the base ring; in our case, we typically haveF (∅) = Q.
Thus a closed surface may be identi�ed with a map from Q to itself. Such a map is, in turn, determined

by where it sends 1 ∈ Q, so that we may consider a closed surface to in fact be a rational number (or, more

generally, an element in the base ring).

We ask that a sphere be assigned the number 0, while a torus (i.e., a genus-one surface) be assigned

the number 2. This means that a cobordism with a closed sphere is always 0, and that we may replace

a torus in a cobordism by multiplying the rest of the cobordism by a factor of 2. These are the S and

T relations, respectively. The 4Tu (i.e., “four tubes”) relation is somewhat more complicated. To begin,

suppose C is a cobordism such that, in some ball, it looks like four disksD1, . . . , D4. If Cij is the result of
removing the disksDi andDj , and replacing them with a tube with the same boundary, then we ask that

C12 + C34 = C13 + C24. See Figure 4.

Theorem 2. For every (1+1)-dimensional TQFTF , the homology KhF (D) ofCKhF (D) is a link invari-
ant, which we may thus denote asKhF (L). (Recall thatD is a diagram for the link L.)

Proof. It is enough to show that KhF (D) is invariant under each of the three Reidemeister moves, which

may be seen in Figure 5. For simplicity, we omit the subscriptF for the remainder of this proof.
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Figure 4: A local picture for the 4Tu relationship.
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R3

Figure 5: The three Reidemeister moves.

First, suppose D and D′ are the two diagrams in the R1 move; in particular, let D be the diagram on

the top left of Figure 5 and D′ the one on the top right. Let c be the crossing which is in D but not D′,
i.e., the crossing shown in the �gure. We want to show that the homology of CKh(D) and the homology

of CKh(D′) are isomorphic. We may do that by constructing chain maps F : CKh(D′) → CKh(D) and
G : CKh(D) → CKh(D′) such that FG and FG are both homotopic to the identity. Then the chain

complexes will be chain homotopy equivalent, hence will be isomorphic in homology.

First, notice that we may write CKh(D) as CKh(D0) ⊕ CKh(D1). HereD0 is the diagram obtained

by 0-smoothing the crossing c andD1 is the diagram obtained by giving c the 1-resolution, as in Figure 6.

Furthermore, let us assumewithout loss of generality that c is the �rst crossing. The grading of any element

D0
D1

Figure 6: The two diagrams obtained by smoothing the crossing c inD.

v ∈ CKh(D1) is grD1

(v) = |v| − n− (D1). On the other hand, seen as an element (1, v) ∈ CKh(D), it has
grading grD (v) = |v| + 1 − n− (D). Note that c is a positive crossing, so n− (D1) = n− (D). In particular,

whenwe consider gradings, the inclusionCKh(D1) ↩→ CKh(D) is actually an inclusionCKh∗−1 (D1) ↩→
CKh

∗ (D). On the other hand, the inclusion of CKh(D0) preserves grading, so that we have

CKh
∗ (D) = CKh

∗ (D0) ⊕ CKh
∗−1 (D1).

Another way to think about this is that CKh(D) is the mapping cone of the (grading-preserving) map

δ : CKh(D0) → CKh(D1) which “forgets” the circle inD0. In particular, we know thatF (Dv q S1) =
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F (Dv) ⊕ F (S1). Let v be some smoothing of D0, and hence of D1, where we order the crossings of D0

andD1 the same way. Then we haveF ((D0)v) = F ((D1)v) ⊕ F (S1); the map δ is thus the projection to
the �rst coordinateF ((D1)v).

To de�ne F , wemust de�ne twomaps F0 : CKh(D′) → CKh(D0) and F1 : CKh(D′) → CKh(D1).
We will de�ne F1 = 0. To de�ne F0, on the other hand, we will �nd cobordisms between the smoothings

ofD′ to the smoothings ofD0 and then to apply the TQFTF to these cobordisms.

Notice that each smoothing ofD′ uniquely corresponds to a smoothing ofD0, namely the smoothing

which resolves each crossing in the same way. The only di�erence in the smoothings is thatD0 has an extra

copy of S1. Thus we may de�ne a cobordism A to be the identity everywhere, and then to be a punctured

torus whose boundary is the extra loop in D0. If one considers the small neighborhoods of D′ and D0

depicted in Figures 5 and 6, respectively, thenA is the product cobordism outside of these neighborhoods.

Inside the neighborhoods, it is the tube shown on the left side of Figure 7 below. On the other hand, we

Figure 7: The two cobordisms which de�ne F0. (Recall that we read cobordisms from bottom

to top, so these cobordisms go fromD′ toD0.)

may also de�ne a cobordism Bwhich is again the identity outside ofN . This time, however, it splits a loop

inD′ into the same loop (seen inD0) and the extra copy of S1 inD0, as seen on the right side of Figure 7.

We de�ne F0 to be the map

F0 ≔ F (A) − F (B) : CKh(D′) → CKh(D0).

We claim that F = (F0, F1) = (F (A − B), 0) is a chain map. Fix some smoothing v of D′, say with
norm i. Then dF and Fd are both obtained by applyingF to some cobordism from v tow, wherew ranges

through (a subset of) smoothings ofD′ (or, equivalently, ofD0) with norm i+1. It su�ces to show that dF
and Fd de�ne isomorphic cobordisms for each suchw. First, notice that F does not change the smoothing

in the sense that it takes an element of D′v to an element of (D0)v. Thus the signs in dF and Fd are the

same, so we may ignore them. On the other hand, notice that Se ◦ A = A ◦ Se, as seen in Figure 8 below.
Similarly, we have Se ◦ B = B ◦ Se, since both cobordisms end up looking like Se with a hole corresponding
to the “arm” which connects to the extra copy of S1 inD0. Hence dF0 = F0d; since we also have F1 = 0, it

follows that dF = Fd.
Now we de�ne G : CKh(D) → CKh(D′). We will be quite a bit more succinct here. For any

x ∈ G, we may write x = (x0, x1). We de�ne G(x) = G(x0) to be obtained by applying the TQFT to the

cobordism C in Figure 9. Once again, this is a chain map because dG andGd both give rise to cobordisms

which, from v to w, look like Se with a punctured sphere next to it.
Now we must show that GF and FG are both homotopic to the identity. In fact, we have that GF is

actually exactly equal to the identity on CKh(D′). To see this, it su�ces to show that the cobordisms are

di�eomorphic to the identity, i.e., product, cobordism. But, using the T relation, we have the equation

depicted in Figure 10 below, which proves that GF0 = id. Thus GF (v) = G(F0 (v), F1 (v)) = G(F0 (v)) is
the identity, as desired.
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Figure 8: The cobordismsA and Se commute since both look like Se with a punctured torus next
to it. Reading from bottom to top, the left diagram is Se ◦ A; the right is A ◦ Se.

Figure 9: The cobordism which de�nesG : CKh(D) → CKh(D′).

GF   =     =   2     =     =      id    = =

Figure 10: The compositionGF is obtained by stacking theG cobordism on top of the F cobor-

dism. The T relation implies that the �rst term of GF is twice the identity, and so we have

GF0 = id.
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Now we must show that FG is chain homotopic to the identity. In particular, we would like to �nd

a family of cobordisms Hvw going from a smoothing v of norm i to a smoothing w of norm i − 1 so that

id−FG = Hd + dH . Recall that c is the crossing in D which is undone by the Reidemeister move. If v
and w di�er at a crossing besides c, let H be the zero cobordism. Otherwise, we have x ∈ F ((D1)v) ⊂
CKh(D1) ⊂ CKh(D) and y ∈ F ((D0)w) ⊂ CKh(D0) ⊂ CKh(D), and de�ne H as in Figure 11.

Then we have Hd(x) = 0, so we must show that FG − id = dH . To see this, we simply apply the 4Tu

Figure 11: The cobordism h goes fromD1 toD0.

relationship to the diagram in Figure 12. Note that C12 and C13 are the two terms in FG, while C24 = id

1 2

3

4

Figure 12: The four disks to which we apply the 4Tu relationship.

andHd = C34.Thus the 4Tu relationship completes the proof that FG ' id.

Hence Kh(D) is invariant under the �rst Reidemeister move.

The proof of invariance for the R2 and R3moves follows a similar idea, though the proofs themselves

(and cobordisms involved) are more complicated. Thus we omit them here; proofs may be found in [3,

2]. �

2 Khovanov homology and variants
So far, what we have done is de�ned a link homology for every (1+1)-dimensional TQFT. Khovanov ho-

mology is obtained by a particular choice of TQFT F . In particular, there is a well-known equivalence

between (1+1)-dimensional TQFTs and Frobenius algebras, as mentioned brie�y in class. Roughly speak-

ing, aTQFTmaps amerging cobordism to themultiplicationmap in the corresponding Frobenius algebra;

similarly, the splitting cobordism corresponds to the comultiplicationmap. For details, see [1]. Thus to de-

�ne a valid link homology, it su�ces to present a suitable commutative Frobenius algebra over Q which

satis�es the S, T , and 4Tu axioms.

The most common TQFT, and the example which is given the name of “Khovanov homology,” is

de�ned as follows. Let V be a graded two-dimensional Q-vector space spanned by v+ and v−; we ask that
v+ has grading +1 while v− has grading−1. (We ask that gradings add along tensor products. Thus v+ ⊗ v−,
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for instance, has grading 0, while v−⊗v− has grading−2.) Thenwe de�ne theTQFTFKh to take a disjoint

union of kmany circles to the vector space V ⊗k. In particular, we have FKh (∅) = Q and FKh (S1) = V .

Furthermore, we de�ne our multiplication mapm : V ⊗ V → V as follows.

m(v+ ⊗ v+) = v+, m(v+ ⊗ v−) = m(v− ⊗ v+) = v−, m(v− ⊗ v−) = 0

Furthermore, we de�ne the comultiplication map Δ : V → V ⊗ V by

Δ(v+) = v+ ⊗ v− + v− ⊗ v+, Δ(v−) = v− ⊗ v−.

Finally, we de�ne our unit and counit maps by

ι(1) = v+

and

ε(v+) = 0, ε(v−) = 1,

respectively. (In the geometric language of TQFTs, the unit and counit maps corresponds to births and

deaths of circles, i.e., to attachments of 0- and 2-handles, respectively.) Onemay check that this does indeed

de�ne a Frobenius algebra (or a TQFT).

Proposition 3. TheFrobenius algebraFKh definedabove satisfies the S,T , and4Tu relations. In particular,
it defines a link homology, which we call Khovanov homology and denoteKh(L).

Proof. First, we verify the S relation. By decomposing the sphere as a 0-handle and a 2-handle, it follows

that the mapFKh (S2) : FKh (∅) → FKh (∅) may be written as the composition

Q = FKh (∅) FKh (S1) FKh (∅) = Q.ι ε

The middle term is exactly V = Qv+ ⊕ Qv−. This map takes 1 ↦→ v+ ↦→ 0, so the sphere S2 corresponds
to the number 0. This is exactly the S relation.

For the T relation, we decompose the torus as a 0-handle, followed by a split, then a merge, and �nally

a 2-handle, as seen in Figure 13. Then we have thatFKh (T 2) may be written as the composition

Figure 13: The torusmay be decomposed into the birth of a circle, followed by a split and amerge,

and �nally the death of a circle.
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Q V V ⊗ V V Q.ι Δ m ε

In particular, this maps takes 1 ↦→ v+ ↦→ v+ ⊗ v− + v− + v+ ↦→ 2v− ↦→ 2. Hence the torus corresponds

to 2 ∈ Q, which is exactly the T relation.

Finally, we must verify the 4Tu relation. First, observe that we may ask that the circular boundaries

of the four disks lie in the same horizontal “slice” of the larger cobordism, drawn as a potentially disjoint

union of cylinders. Wemay also ask that the interiors of these disks lie below this slice. Themap associated

to the four di�erent cobordisms in the 4Tu relation is the same above the slice; furthermore, below the

slice, the only di�erence is in this small neighborhood where the tubes are created. Thus the local picture

we must show is that Figure 14.

+ = +

Figure 14: The local picture we would like to show in order to prove that F
Kh

satis�es the 4Tu
relation.

On the left side, we have the map

Δ ◦ ι ⊗ ι ⊗ ι + ι ⊗ ι ⊗ Δ ◦ ι : FKh (∅) → FKh (V ⊗4).

The �rst term takes 1 to v+ ⊗ v− ⊗ v+ ⊗ v+ + v− ⊗ v+ ⊗ v+ ⊗ v+; the second takes 1 to v+ ⊗ v+ ⊗ v+ ⊗ v− +
v+ ⊗v+ ⊗v− ⊗v+. On the right side, a similar argument implies that the local picture corresponding toC13

maps 1 to v+ ⊗ v+ ⊗ v− ⊗ v++v− ⊗ v+ ⊗ v+ ⊗ v+. (Note that themap in this case is p1Δι⊗ ι⊗ p2Δ⊗ ι, where
p1, p2 : V ⊗ V → V are the projections to the �rst and second coordinates, respectively.) Similarly, the

local picture corresponding toC24 takes 1 to v+ ⊗ v+ ⊗ v+ ⊗ v− + v+ ⊗ v− ⊗ v+ ⊗ v+. Thus bothC12 +C34

and C13 + C24 take 1 to the sum of the four terms with exactly one v− and three v+’s. In particular, these

are equal, soFKh satis�es the 4Tu relation, as desired. �

In fact, because the base vector spaceV was graded, Khovanov homology is actually a bigraded theory.

On one hand, there is the homological grading from before; on the other hand, there is a new grading,

known as the quantum grading, coming from the grading of V . In particular, if x ∈ F (Dv) is a homoge-

neous element in CKh(D), then we de�ne p(x) to be the grading of x as an element ofV ⊗ · · · ⊗V . Then

we de�ne the quantum degree to be

qdeg(x) ≔ p(x) + gr(v) + n+ − n− = p(x) + |v| + n+ − 2n−.

Here n+ and n− denote the number of positive and negative crossings in D. They are included in the

computation of the degree so that qdeg(x) is independent of the diagram.

A variant of this theory, due to Eun Soo Lee [4], is de�ned by slightly di�erent cobordism maps. In

particular, everything is the same exceptm(v− ⊗ v−) = v+ and Δ(v−) = v+ ⊗ v+ + v− ⊗ v−. One may

9



Jessica J. Zhang Section 2. Khovanov homology and variants

verify that this also satis�es the three necessary relations, so this too gives a link homology, often known as

Lee homology. We denote it by Lee(L). Because Δ, for example, is not even homogeneous, we do not get

a bigraded theory. Indeed, the quantum grading actually de�nes a �ltration on the complex CKh(L); for
more details see [5].

Finally, to illustrate these two theories, we present a computation of the homologies of the Hopf link

L in Figure 15. The cube of resolutions for the diagramD of L in Figure 15 is as shown in Figure 16.

Figure 15: A diagram of the Hopf link with two positive crossings. (Orientations will be impor-

tant for determining grading, which depends on the number of positive and negative crossings.)

merge

merge

(0,0)

(1,0)

(0,1) (1,1)

split

-split

Figure 16: The cube of resolutions for the Hopf link. Each column corresponds to smoothings

of �xed grading; since n+ = 2 and n− = 0, the grading is the same as the norm of the smoothing,

so the columns corresponds to homological gradings 0, 1, and 2, from left to right. The maps are

given by merges and splits, as indicated. The dashed arrow indicates a negative arrow.

In particular, the chain complex CKh(D) is given by

F (S1 q S1) → F (S1) ⊕ F (S1) → F (S1).

Specifying the homological gradings, these terms correspond toCKh
0 (D), CKh1 (D), andCKh2 (D) from

left to right. Since Khovanov and Lee homology have the same chain complexes, this complex is always

V ⊗ V → V ⊕ V → V.

The �rst map sends x ⊗ y ↦→ (m(x ⊗ y), m(x ⊗ y)), while the secondmap sends x ⊕ y, where x belongs to
the (1, 0)-smoothing and y to the (0, 1)-smoothing, to −Δ(x) + Δ(y).
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We compute the Khovanov homology �rst. Then the �rst di�erential d0 : CKh0 (D) → CKh
1 (D) is

de�ned by

d0 (v+ ⊗ v+) = (v+, v+), d0 (v+ ⊗ v−) = d0 (v− ⊗ v+) = (v−, v−), d0 (v− ⊗ v−) = (0, 0).

This has two-dimensional kernel spanned by v− ⊗ v− and v+ ⊗ v− − v− ⊗ v+, and so it follows that

Kh
0 (L) = Q2

. Furthermore, the quantum grading of the two elements are 0 and 2, respectively, so it

follows that Kh
0,0 (L) and Kh0,2 (L) are bothQ.

The image of d0, on the other hand, is the two-dimensional space (x, x). Now d1 is de�ned by

−d1 (v+, 0) = v+ ⊗ v− + v− ⊗ v+ = d1 (0, v+), −d1 (v−, 0) = v− ⊗ v− = d1 (0, v−).

Hence (v+, v+) and (v−, v−) span the kernel of d1. Thus Kh1 (L) = ker d1/im d0 is 0.
Finally, the image of d1 is spanned by v+ ⊗ v− + v− ⊗ v+ and v− ⊗ v−. On the other hand, the kernel

of d2 contains everything, so ker d2/im d1 is spanned by v+ ⊗ v+ and v+ ⊗ v−. The former has quantum

degree 6 while the latter has quantum degree 4.

Hence we have the following calculation:

Kh
i,j (L) =

{
Q if (i, j) = (0, 0), (0, 2), (2, 4), or (2, 6),
0 otherwise.

Nowwe compute the Lee homology. We compute the di�erentials d0 and d1 again:

d0 (v+ ⊗ v+) = (v+, v+), d0 (v+ ⊗ v−) = d0 (v− ⊗ v+) = (v−, v−), d0 (v− ⊗ v−) = (v+, v+)

−d1 (v+, 0) = v+ ⊗ v− + v− ⊗ v+ = d1 (0, v+), −d1 (v−, 0) = v+ ⊗ v+ + v− ⊗ v− = d1 (0, v−).

Thus ker d0 is spanned by v+ ⊗ v+ − v− ⊗ v− and v+ ⊗ v− − v− ⊗ v+. Hence Lee
0 (L) = Q2

. On the other

hand, we know that im d0 and ker d1 are again both spanned by v+ ⊗ v+ and v− ⊗ v−, so that Lee1 (L) = 0.

Finally, we have that im d1 is spanned by v+ ⊗ v− + v− ⊗ v+ and v+ ⊗ v+ + v− ⊗ v−, so that Lee2 (L) = Q2

is spanned by v+ ⊗ v+ and v+ ⊗ v−.
In this case, when considered purely as (ungraded) vector spaces, we have Kh(L) � Lee(L) � Q4

.

However, this is not generally true. For example, one may compute that the Khovanov homology of the

trefoil is four-dimensional, while its Lee homology is only two-dimensional. It turns out, however, that

rank Lee(L) ≤ rank Kh(L) in general. While we do not describe the details here, this may be proved by

the fact that quantum grading de�nes a �ltration on the Lee chain complex; one may eventually use this

�ltration to obtain a spectral sequence from Khovanov homology to Lee homology, as in [5]. Further-

more, Lee proved in [4] that the rank of Lee homology is always equal to 2
|L |
, where |L| is the number of

components in L, this spectral sequence gives us useful information about Khovanov homology.
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