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Abstract

Bordered Heegaard Floer homology is a powerful invariant of bordered 3-manifolds, i.e., 3-manifolds
with a single boundary component that is parameterized by a combinatorial object called a “pointed
matched circle.” It can be used, for example, to compute Heegaard Floer homology by a so-called “pairing
theorem.” Though beyond the scope of this thesis, bordered Heegaard Floer homology also has applica-
tions to knot theory (e.g., to compute the Ozsváth–Szabó spectral sequence between Khovanov homol-
ogy and Heegaard Floer homology, or to give a knot Floer homology of tangles), 4-dimensional topology
(e.g., to show that there are knots in homology 3-balls which do not bound piecewise linear disks in
any homology 4-balls, or to find various examples of exotic phenomena), and contact geometry (e.g., by
proving a pairing theorem for contact invariants, or by showing that there are computable, though not
yet geometrically understood, A∞-style maps on the set of contact structures).

The construction of bordered Heegaard Floer modules ĈFA(Y ) and ĈFD(Y ) involves counting
holomorphic curves on Σ × [0, 1] × R, where Σ is the Heegaard surface of some Heegaard diagram rep-
resenting Y . This is reminiscent of Lipshitz’s cylindrical formulation of Ozsváth and Szabó’s Heegaard
Floer homology, which we also briefly sketch. As in many Floer homologies, we define a moduli space of
such holomorphic curves, and that it is contained in a compact manifold whose dimension is given by
some index formula. We focus particularly on the proof that this moduli space may be compactified, and
prove results from symplectic field theory in doing so. We conclude with the definition of the invariants
ĈFA(Y ) and ĈFD(Y ) as a certain count of points in this moduli space and with a proof of the pairing
theorem.

This thesis can be thought of as a supplement to Lipshitz, Ozsváth, and Thurston’s monograph Bor-

dered Heegaard Floer homology, which details the construction and invariance of the bordered Heegaard
Floer modules ĈFA and ĈFD. We focus primarily on their geometric and analytic insights, while being
somewhat lighter on the algebra. Instead, whenever possible, we illustrate algebraic results geometrically.
We hope that this thesis will be helpful to anyone trying to learn the details of bordered Heegaard Floer
homology, as well as to anyone trying to understand many of the compactness proofs that appear in in-
variants which arise from counting points in moduli spaces (e.g., Gromov–Witten invariants). While
readers with the latter aim will not find anything specifically geared toward their interests, we hope that
the focus on compactness results will still provide some useful perspective.
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Chapter 1

Introduction

And I feel like this year is really about, like, the year of
realizing stuff. And everyone around me, we’re all just,
like, realizing things.

Kylie Jenner

In the past few decades, there has been an explosion of interest in low-dimensional topology, owing in
part to the discovery of new invariants. A topological invariant is some quantity (e.g., a number, polyno-
mial, or homology group) which does not change under some equivalence, often continuous or smooth
deformation. Thus an invariant helps us classify and distinguish manifolds.

Floer homology is a family of such invariants. Perhaps more accurately, we may call Floer homology
a “technique,” from which many invariants may be created. Loosely speaking, Floer homology is an
infinite-dimensional analogue of Morse homology.

In the Morse case, one considers a Morse function on a manifold M and considers the vector space
CM (M) spanned by its critical points. If one equips M with a Riemannian metric, then one can com-
pute the gradient of the Morse function. This gradient flows from higher-index critical points to lower-
index critical points. One can count the number of flowlines np,q between critical points p and q of index
i and i − 1, respectively. Then we define the differential as

𝜕p ≔
∑︁

ind(q)=ind(p)−1
np,qq.

Then (CM (M), 𝜕) is a chain complex, and its homologyHM (M) is an invariant ofM, i.e., independent
of the choice of Morse function and Riemannian metric.

Floer homology does the same thing—considers a functional with nondegenerate critical points, de-
fines the chain complex to be freely generated by these critical points, and then counts flowlines to define
the differential—but with a functional that is now defined on an infinite-dimensional space. For example,
the earliest version of Floer homology, due to Andreas Floer, is known as Hamiltonian (or symplectic)
Floer homology and gives an invariant of symplectic manifolds [Flo88a, Flo88c, Flo89a, Flo89b]. It is
defined by doing Morse homology on a function defined on the loop space of the manifold.

Other versions of Floer homology give 3-manifold invariants which are intimately connected to in-
variants coming from mathematical gauge theory, i.e., coming from solutions to partial differential equa-
tions arising in the study of connections on principal bundles. In particular, in the 1980s, Simon Don-
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aldson defined the gauge-theoretic Donaldson invariants, which were invariants of 4-manifolds. (These
are invariants coming from the so-called “anti-self-dual equations.”) Instanton Floer homology gave a
3-manifold version of the Donaldson invariants [Flo88b, DK90]. Subsequently, monopole Floer homol-
ogy (or Seiberg–Witten Floer homology) gave a 3-dimensional analogue of the Seiberg–Witten invariants,
which were similar to but often easier to compute than Donaldson invariants [KM07].

There is another family of 3-manifold invariants known as Heegaard Floer homology, first discovered
by Peter Ozsváth and Zoltán Szabó [OS04c, OS04b]. These invariants were conjectured to be isomorphic
to monopole Floer homology, and this equivalence was proved in a series of papers by Çağatay Kutluhan,
Yi-Jen Lee and Clifford Taubes [KLT20]. It is worth noting, furthermore, that monopole and Heegaard
Floer homology are conjecturally isomorphic to instanton Floer homology.) This is an invariant of 3-
manifolds, and may be used to construct a 4-manifold invariant as in [OS06], in contrast to how the
invariants described above began as 4-manifold invariants whose 3-manifold analogues were discovered
later on. (The 4-manifold invariant arising from ĤF , which is the variant of Heegaard Floer homology
which will be most relevant to this thesis, is not actually an interesting one. Instead, to obtain an inter-
esting 4-manifold invariant, one must use more refined versions of Heegaard Floer homology, denoted
HF

+ and HF−.)
Informally, the relationship between the 4-dimensional invariants and their 3-dimensional counter-

parts is as follows: The Floer homology associates a graded abelian group to a 3-manifold Y . If W is a
4-manifold with 𝜕W = Y , then we associate to it a homology class in the Floer homology of Y . Now if
X is a closed 4-manifold which decomposes as X = X1 ∪𝜕 X2, then the 4-manifold invariant is a number
coming from the pairing of the homology classes of X1 and X2.

In the Heegaard Floer case, which is the one most relevant to this thesis, this looks like the following.
Every closed and oriented smooth 3-manifold Y is assigned an F2-vector space ĤF (Y ) which is obtained
as the homology of some chain complex. Then a (4-dimensional) cobordism W between Y1 and Y2 is
associated a linear map FW : ĤF (Y1) → ĤF (Y2). Furthermore, this assignment fits into the framework
of a (3 + 1)-dimensional topological quantum field theory (TQFT) as in [Ati88]. In particular, we have
the following. Let Cob(3) be the category whose objects are closed, oriented, smooth 3-manifolds and
whose morphisms are smooth, oriented, and connected 4-manifold cobordisms. Then ĤF is a functor
from Cob(3) to the category of F2-vector spaces. On objects, this is the map Y ↦→ ĤF (Y ), while on
morphisms it is the map W ↦→ FW .

It is natural to ask whether a (3 + 1)-TQFT may be extended to a (2 + 1 + 1)-TQFT, i.e., if we can
extend to a map taking 2-manifolds to algebras over F2 in such a way that the composition axioms of a
2-category are satisfied. If so, one could recover Heegaard Floer invariants of 3-manifolds with boundary
by considering them to be cobordisms between 2-manifolds.

Bordered Heegaard Floer homology, an invariant due to Robert Lipshitz, Peter Ozsváth, and Dylan
Thurston [LOT18] and the subject of this thesis, is a step in this direction. The 2-manifold invariant it
defines ends up being a differential graded algebra which depends on some extra data, namely a choice
of parameterization, and thus is not a genuine topological invariant. Similarly, bordered Heegaard Floer
homology does extend Heegaard Floer homology to manifolds with one boundary component, but is
only an invariant of so-called “bordered 3-manifolds.” These are manifolds whose boundary component
have been parameterized by a choice of handle decomposition. Furthermore, we may recover Heegaard
Floer homology by decomposing a closed manifold into two manifolds with boundary and computing
the tensor product of their bordered Heegaard Floer invariants.
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1.1 The bordered Heegaard Floer package
Consider a closed, oriented 2-manifold F which has been equipped with a certain parameterization. This
parameterization is given by a pointed matched circle Z . One may associate Z to a differential graded
algebra A(Z). This algebra is not itself an invariant of the surface F , but gives rise to bordered Heegaard
Floer homology invariants.

In particular, if Y is a 3-manifold equipped with an orientation-preserving diffeomorphism ϕ : F →
𝜕Y , then one can associate two algebraic objects to Y . (One calls such a manifold (Y, ϕ) a bordered 3-

manifold.) The first is the type A module ĈFA(Y ), which is a right A∞ module over A(Z). (An A∞
module is like a module, but might not satisfy associativity on the nose. Instead, it satisfies associativity
up to a homotopy which is encoded by some higher multiplication m3. This map m3 itself satisfies an
associativity-type requirement only up to homotopy as well, and so on.) The second module associated
to Y is the type D module ĈFD(Y ), which is a differential graded left A(−Z)-module. This is an on-the-
nose differential module, rather than an A∞ module. However, it has a further algebraic structure called
a type D structure.

This type D structure gives rise to a pairing result. If Y1 and Y2 are two bordered 3-manifolds with
𝜕Y1 = −𝜕Y2, then ĤF (Y1 ∪𝜕 Y2) = ĈFA(Y1)⊗̃ĈFD(Y2). (Note that we write ⊗̃ instead of the typical
tensor product⊗. This is because the pairing theorem involves theA∞ tensor product instead.) In theory,
this gives a more efficient way to compute the Heegaard Floer homology of a closed 3-manifold.

We briefly remark on the construction of the bordered Heegaard Floer invariants ĈFA and ĈFD. One
defines them on a Heegaard diagram H representing a bordered 3-manifold Y . This diagram comprises
a surface Σ with boundary 𝜕Σ = S

1 parameterized by a pointed matched circle Z , along with some
curves and arcs with boundary on 𝜕Σ. These curves and arcs tell us how to attach 2-handles to Σ to
obtain Y . Both ĈFA and ĈFD are generated by g(Σ)-tuples of intersection points of the curves and
arcs. (In particular, the generators of ĈFA and ĈFD are finite subsets of Σ.) The multiplication maps
in ĈFA and the differential in ĈFD are defined by counting the number of elements in a certain moduli
space of holomorphic curves in Σ × [0, 1] × R. Just as how the differential in Morse homology counted
flowlines between generators (i.e., critical points), the maps in bordered Heegaard Floer homology count
the number of holomorphic curves which connect generators of ĈFA and ĈFD.

While bordered Heegaard Floer homology involves somewhat sophisticated algebraic constructions,
most notably A∞ modules (which are not particularly common in low-dimensional topology, though
they come up quite often in symplectic geometry) and type D structures (which were created expressly
for bordered Heegaard Floer homology), we focus in this thesis on the geometry of the subject instead.
In particular, these holomorphic curves between generators form the geometric heart of bordered Hee-
gaard Floer homology, as well as the technical heart of this thesis. As such, we discuss holomorphic curve
theory—and, even more specifically, compactness results—at some length.

Because of this, beyond the standard undergraduate curriculum, it is useful for a reader to have fa-
miliarity with basic algebraic topology and symplectic geometry. It may also be helpful, though not nec-
essary, for a reader to have seen some pseudoholomorphic curve theory, e.g., some results from [MS12].
It would also be helpful to not be colorblind, particularly not red-blue colorblind (which I have recently
learned does, in fact, exist). I am sorry that this thesis, or at least the figures therein, will not be particularly
readable otherwise.
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1.2 Organization
We begin in Chapter 2 by introducing the geometric objects which will be used define our bordered
Heegaard Floer invariants, namely pointed matched circles and Heegaard diagrams. (It turns out that
the definition is independent of the choice of Heegaard diagram which induce the same pointed matched
circle, so that ĈFA and ĈFD are genuine invariants of 3-manifolds with parameterized boundary.) We
will also define the set 𝔖(H); its elements will eventually be the generators of our type A and type D
modules.

In Chapter 3, we give a description of the moduli spaces whose curves we will count in the definition
of the maps in ĈFA and ĈFD. We begin by defining these moduli spaces. To prove that ĈFA and ĈFD
have the desired algebraic properties, we need to prove a few compactness and gluing results. We omit
the latter (as is perhaps standard), but spend some time discussing the former. To do so, we bring in ideas
from symplectic field theory.

To emphasize the focus on the geometric aspect of bordered Heegaard Floer homology, we postpone
nearly all the algebra until the very end, in Chapter 4. This is where we define A∞ modules, as well as
the algebra A(Z) associated to a pointed matched algebra. We then define ĈFA and ĈFD, and conclude
with a brief sketch of the pairing theorem, which reconstructs closed Heegaard Floer homology ĤF from
the type A and type D modules. We focus throughout primarily on examples, and on how the algebraic
features of the type A and type D modules correspond to elements of the moduli spaces discussed in the
previous chapter.

We are obliged at this point to mention that the curious reader would find a more complete treatment
of this subject in the original monograph by Lipshitz, Ozsváth, and Thurston [LOT18]. We do not aim
to replace their exposition, but instead hope to serve as a useful and streamlined supplement, filling in
certain gaps while omitting some details which are less relevant to the actual geometry of the definition.
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Chapter 2

Heegaard diagrams

We knew hitherto only a superficial image; behold it has
gained depth, it extends into three dimensions, it moves.

Marcel Proust, The Guermantes Way

Heegaard diagrams, first defined by Poul Heegaard in [Hee98], are a way to encode 3-manifolds one
dimension down. They are the essential objects of study in the definition of Heegaard Floer homology.
In particular, Heegaard Floer homology is defined for a Heegaard diagram. (It turns out, of course, to be
an invariant of the 3-manifold represented by the diagram.)

As such, we begin in Section 2.1 by defining Heegaard diagrams for closed 3-manifolds. Bordered
Heegaard Floer homology generalizes Heegaard Floer homology to so-called “bordered 3-manifolds.”
We discuss these objects in Section 2.2. Roughly speaking, bordered manifolds are just manifolds with
one parameterized boundary component. In analogy to Heegaard diagrams, we may define bordered
Heegaard diagrams of a bordered 3-manifold. We do so in Section 2.3. In Section 2.4, we define the gen-
erators of both the Heegaard Floer and bordered Heegaard Floer complexes. We also introduce certain
admissibility conditions which our (bordered) Heegaard diagrams must fulfill in order for them to be
well-suited for defining (bordered) Heegaard Floer homology. In particular, these admissibility require-
ments ensure that certain sums which appear in the definition of the differential remain finite. Finally,
in Section 2.5, we give an informal description of Lipshitz’s cylindrical reformulation of Heegaard Floer
homology [Lip06a]. This introduces the moduli spaces which we will define more rigorously and study
in depth in the following chapter.

2.1 Heegaard diagrams of closed 3-manifolds
A Heegaard diagram H is a way to represent a closed 3-manifold Y via a surface and some collection of
curves. Roughly speaking, these curves tell us how to attach 3-balls to the surface, and hence how to
construct a 3-manifold. More precisely, a Heegaard diagram encodes a so-called “handle decomposition”
of Y ; the attached 3-balls are known as “handles.”

More precisely, for 0 ≤ k ≤ n, recall that an n-dimensional k-handle is a copy of Dn = D
k ×D

n−k

which is attached to an n-dimensional manifoldM by some embedding 𝜕Dk×Dn−k ↩→ 𝜕M. There is a
canonical way to smooth corners, so the resulting object may be considered as ann-dimensional manifold
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as well. It is homotopically the same as attaching a k-cell; indeed, a k-handle may be thought of as a
“thickened” k-cell. Note that a 0-handle simply looks like an n-ball, without any attaching map. With
this setup, we call the image of 𝜕Dk × {0} in 𝜕M the attaching sphere.

If we may write M as the union of some handles, glued to each other via attaching maps, then we
say that we have a handle decomposition of M. Any handle decomposition must have at least one
0-handle, as all other handles must attach to a preexisting manifold. In fact, any closed n-manifold M

admits a handle decomposition into n-dimensional k-handles. (The same actually holds for manifolds
with boundary, but we focus for now on the closed case.)

To see this fact, recall that a Morse function onM is a smooth map f : M → Rwhose critical points
are nondegenerate. It is a well-known fact that anyM admits a Morse function. The topology of the sub-
level sets {x : f (x) ≤ c} changes by attaching an n-dimensional k-handle when c passes through a critical
value corresponding to a critical point of index k. Thus a Morse function defines a handle decomposition
for M, as in Figure 2.1. In fact, any M actually admits a self-indexing Morse function, i.e., a Morse

0

1

1

2

height

Figure 2.1: The height function above is a Morse function, and gives a decomposition of S1 × S
1

into one 0-handle, two 1-handles, and one 2-handle. Note that this function isn’t self-indexing.

function f such that f (p) = k for any index-k critical point p of f . This means that we may attach all the
0-handles first, then all the 1-handles at the same time, and so on. Details about handle decompositions
and Morse functions may be found in [GS99, Chapter 4] and [Mil63, Part 1].

Now let us restrict our attention to the n = 3 case. Consider a particular handle decomposition of
M. We may require that there is only one 0-handle and one 3-handle. Let U be the union of the 0- and
1-handles, and V the union of the 2- and 3-handles. We call U and V “handlebodies.”

In particular, for our purposes, a handlebody is a single 3-ball (i.e., 0-handle) with some number of
1-handles attached. For example, the genus g handlebody is simply the 3-manifold with boundary which
is bounded by the usual genus g surface. With this definition of a handlebody, U is clearly a handlebody.
TurningV upside down, we see thatV is also composed of a single 0-handle and several 1-handles, hence is
also a handlebody. Thus we may writeM = U ∪ΣV , where Σ is the closed surface which is the common
boundary of U and V . Such a decomposition of M into two handlebodies is known as a Heegaard
decomposition or a Heegaard splitting.

Let M = U ∪Σ V be a Heegaard decomposition. Let ααα = {α1, . . . , αg} and βββ = {β1, . . . , βg} be
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the collections of attaching curves for the 1-handles in U and V , respectively. (Note that these 1-handles
are being attached to Σ as 2-handles, as their attaching spheres are circles.) These are curves living on
Σ. Given only Σ, ααα, and βββ, we can recover M by attaching 1-handles to the curves and capping off the
boundary components with 3-balls. With this in mind, we may make the following definition.

Definition 2.1. Consider a triple (Σ, ααα, βββ) consisting of a compact oriented genus-g surface Σ without
boundary, along with two setsααα andβββof gmany disjoint closed curves. Suppose the surfacesΣ\ααα andΣ\βββ
are both connected. Suppose furthermore that the ααα- and βββ-curves intersect transversely. Then (Σ, ααα, βββ)
is a (closed) Heegaard diagram. Furthermore, if the closed manifold M is obtained from (Σ, ααα, βββ) as
described above, then we say that (Σ, ααα, βββ) is a Heegaard diagram representingM.

In general, there are many Heegaard decompositions forM, and many Heegaard diagrams for a given
Heegaard decomposition (Σ, U, V ). For example, we may write S3 as the union of two 3-balls. Alterna-
tively, we may write it as the union of two solid tori. After all, we know that S3 = 𝜕D4 = 𝜕 (D2 ×D

2) =
(S1 ×D

2) ∪ (S1 ×D
2). Geometrically, this splitting is seen in Figure 2.2. The Heegaard diagram of this

Figure 2.2: A Heegaard splitting of S3 = (S1 ×D2) ∪ (S1 ×D2). One copy of S1 ×D2 is indicated
by the black torus. The other copy is given by slowly blowing the blue disk up; each “blown-up”
disk intersects the red circle at one point. Thus the colorful region is another copy of S1 ×D

2.

splitting is seen in the right side of Figure 2.3. Another example of a Heegaard diagram, this time for the
3-manifold S1 × S2, is (S1 ×D2

, βββ, βββ), where βββ refers to the meridian of S1 ×D2. This Heegaard diagram
corresponds to the decomposition of S1 × S

2 as (S1 ×D
2) ∪ (S1 ×D

2).
Heegaard Floer homology is an invariant of 3-manifolds which is defined through data in a Heegaard

diagram. For this to make sense, we need the following proposition.

Proposition 2.2. Any two Heegaard diagrams for M may be related by a sequence of Heegaard moves,

namely isotopy, handleslides, and (de)stabilizations.
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Figure 2.3: Heegaard diagrams of two splittings of S3, namely the trivial S3 = D
3 ∪ D

3 and the
splitting depicted above in Figure 2.2. In the first case, we have ααα = βββ = ∅. In the second case, ααα is
the red longitude, while βββ is the blue meridian.

The first two Heegaard moves mentioned above relate Heegaard diagrams of the same Heegaard de-
composition, while stabilizations relate Heegaard decompositions with a surface Σ of genus g to decom-
positions with a surface of genus g + 1. It is not too important for our purposes to know exactly what
these moves are. The point is simply that an invariant of Heegaard diagrams which is preserved by all
three Heegaard moves is also an invariant of 3-manifolds.

We will actually work with pointed Heegaard diagrams to define Heegaard Floer homology.

Definition 2.3. A pointed Heegaard diagramH is a quadruple (Σ, α, β, z) where (Σ, α, β) is a Hee-
gaard diagram, and z is a point in Σ \ (α ∪ β).

Any two pointed Heegaard diagrams for the same Heegaard decomposition may be connected by
a sequence of pointed Heegaard moves, namely pointed isotopies, pointed handleslides, and (de)stabil-
izations. The first two are simply pointed generalizations of the Heegaard moves in Proposition 2.2. In
particular, pointed isotopies are isotopies which do not cross the basepoint z, and similarly for pointed
handleslides.

2.2 Pointed matched circles and bordered 3-manifolds
Our main object of study will be bordered 3-manifolds. These are 3-manifolds with connected boundary
whose boundary contains some extra information parameterized by a so-called “pointed matched circle.”
This pointed matched circle encodes a handle decomposition of a surface in much the same way as how
a Heegaard diagram encodes a handle decomposition of a 3-manifold.

Consider a closed orientable surface F of genus g. Then it admits a self-indexing Morse function
with one index-0 critical point, 2g index-1 critical points, and one index-2 critical point. To specify F , it
is enough to specify how the 2g 1-handles attach to the 0-handle. After all, there is then a unique way to
glue the index-2 critical point, namely in such a way that the result has no boundary. But to specify how a
1-handle is attached to a 0-handleD2, it suffices to specify an embedding of S0 = 𝜕D1 into the boundary
of the 0-handle. Thus it suffices to specify 4g points on 𝜕D2 = S

1, as well as a “matching” which tells us
which pairs of points belonged to the same 1-handle. Finally, we need the result of attaching 1-handles to
have connected boundary, so that we may glue a single 2-handle to obtain a closed surface.

Thus we make the following definition.
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Definition 2.4. Consider a tripleZ = (Z, a,M) comprising an oriented circleZ, a set a = {a1, . . . , a4k}
of 4k points in Z, and a 2-to-1 function M : a → {1, . . . , 2k} for some k ≥ 1. We call M a matching.
It defines 2k pairs of ai’s. If the 1-dimensional manifold obtained by surgery along each of these pairs,
thought of as a 0-sphere, is connected, then we say that Z is a matched circle. If (Z, a,M) is a matched
circle and z ∈ Z \ a, then we call (Z, a,M, z) a pointed matched circle.

If F is obtained from Z by gluing 1-handles to the pairs specified by M, then we write F = F (Z).
Note that, if Z = (Z, a,M) has 4k points in a, then F has genus 2k. Figure 2.4 shows an example and a
non-example of a matched circle.

a4

a1

a2

a3

a4

a1

a2

a3

Figure 2.4: The left side, namely Z = (Z, a,M) with matching M (a1) = M (a3) = 1 and
M (a2) = M (a4) = 2, is a matched circle representing the genus 1 surface. The right side, with
matching M (a1) = M (a2) = 1 and M (a3) = M (a4) = 2, is not a matched circle, since there
is more than one boundary component (i.e., surgery on the pairs (a1, a2) and (a3, a4) produces
a disconnected 1-manifold).

Definition 2.5. A bordered 3-manifold is a triple (Y,Z , ϕ) where Y is a compact oriented 3-manifold
with one boundary component, Z is a pointed matched circle, and ϕ : F (Z) → 𝜕Y is an orientation-
preserving homeomorphism.

We close this section with a discussion of Reeb chords. These will be important in our definition of
(bordered) Heegaard Floer homology since the differentials will be defined by moduli spaces consisting
of maps which, among other things, converge to tuples of Reeb chords.

Definition 2.6. A Reeb chord ρ in (Z \ z, a) is an embedded arc in Z \ z whose endpoints are points
in a and whose orientation is induced by the orientation on Z.

We call these chords “Reeb chords” because we may think ofZ as a contact 1-manifold, and the points
a as a Legendrian submanifold. The chords in question are then Reeb chords under the usual definition.

We denote the initial and terminal point of ρ as ρ− and ρ
+, respectively. A set of Reeb chords is

consistent if none of the Reeb chords share either an initial point or a terminal point. That is, we call
ρρρ = {ρ1, . . . , ρn} consistent if ρ−

i
≠ ρ

−
j

and ρ+
i
≠ ρ

+
j

for any i ≠ j.
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Consider the points in a to be in increasing order from the basepoint z as we go aroundZ (respecting
the orientation on Z). Then we call two Reeb chords ρ and σ nested if either ρ− < σ

−
< σ

+
< ρ

+ or
σ
−
< ρ

−
< ρ

+
< σ

+. We call them interleaved if σ+ and ρ+ are swapped, i.e., if either ρ− < σ
−
< ρ

+
< σ

+

or σ− < ρ
−
< σ

+
< ρ

+. See Figure 2.5.

ρ
−

ρ
+

σ
+

σ
−

ρ
−

σ
+

ρ
+

σ
−

Figure 2.5: The left side shows two nested Reeb chords, while the right side shows two interleaved
Reeb chords. Note that the circles are oriented counterclockwise here.

Finally, we may define an operation on Reeb chords as follows. If ρ and σ are abutting Reeb chords
in the sense that ρ+ = σ

−, then their join ρ ⊎ σ is the concatenation, i.e., the Reeb chord from ρ
− to σ+.

2.3 Bordered Heegaard diagrams
A bordered Heegaard diagram is analogous to a Heegaard diagram, only for bordered manifolds. In par-
ticular, the main difference between a closed Heegaard diagram and a bordered one is that the surface in
the bordered case has a boundary component, and the α-curves are allowed to be arcs now. Thus we make
the following definition.

Definition 2.7. A (pointed) bordered Heegaard diagram is a quadruple H = (Σ, ααα, βββ, z) where

• Σ is a compact oriented surface with one boundary component and genus g;

• βββ = {β1, . . . , βg} is a g-tuple of pairwise-disjoint circles in the interior of Σ;

• ααα = {αc1, . . . , αcg−k, α
a

1 , . . . , α
a

2k} is a set of g + kmany pairwise-disjoint curves in Σ where the αc
i
’s are

circles in the interior and the αa
i

’s are arcs with boundary in 𝜕Σ which are transverse to 𝜕Σ; and

• z is a point in 𝜕Σ \ (ααα ∩ 𝜕Σ),

such that ααα and βββ intersect transversely, Σ \ ααα is connected, and Σ \ βββ is connected.

An example of a bordered Heegaard diagram for the genus 1 handlebody is depicted in Figure 2.6.
We may obtain a bordered Heegaard diagram for the genus-2 handlebody by taking the boundary con-
nect sum of two copies of the genus-1 diagram, as shown in Figure 2.7. A different bordered Heegaard
diagram for the genus 2 handlebody is shown in Figure 2.8 by picking a different parameterization of
the boundary. In general, a bordered Heegaard diagram without α-circles necessarily represents a genus
g handlebody for some g.

Notice that the boundary of a bordered Heegaard diagram may be thought of as a pointed matched
circle. See [LOT18, Lemma 4.4].
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Figure 2.6: Here ααα = {αa1 , αa2} consists of the two red arcs and βββ = {β1} consists of the single blue
circle. In particular, there are no α-circles αc

i
. This is a bordered Heegaard diagram for a genus 1

handlebody. (We may let z be any point of 𝜕Σ which is not on the red α-arcs.)

1 1 2 2=

Figure 2.7: A bordered Heegaard diagram for the genus-2 handlebody. Here (and later on), we use
circles with numbers to indicate where a 1-handle D1 ×D

2 is attached. In particular, we imagine
the plane of this sheet of paper to be the boundary S2 = R2 ∪ {∞} of a 0-handleD3. We actually
lop off half of this 0-handle, since we have a manifold with boundary. The black oval denotes this
boundary circle, so the interior denotes the boundary of this lopped-off 0-handle. Then attaching
a 1-handle corresponds to embedding 𝜕D1 ×D

2 = D
2 ⨿ D

2 into this oval.
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1 1 2 2=

Figure 2.8: A different bordered Heegaard diagram for the genus 2 handlebody.

Lemma 2.8. LetH = (Σ, ααα, βββ, z) be a bordered Heegaard diagram. Let Z = 𝜕Σ and a = ααα∩Z. Consider

the matching M : a → {1, . . . , 2k} which takes α
a

i
∩ Z to i. Then (Z, a,M, z) is a pointed matched circle.

We denote the pointed matched circle from Lemma 2.8 by 𝜕H, and call it the boundary ofH. For
example, if H denotes the bordered Heegaard diagram from Figure 2.6, then we have that 𝜕H is the
pointed matched circle in the first row of Figure 2.4.

A bordered Heegaard diagram gives rise to a bordered 3-manifold much as how a Heegaard diagram
gives rise to a closed 3-manifold, namely by indicating attaching spheres for the 1- and 2-handles. In
particular, consider the thickeningΣ×[0, 1] of the Heegaard surfaceΣ. Attach a 3-dimensional 2-handle
to each αc

i
× {0} and to each βi × {1}, and call the resulting manifold Y . Originally, the thickening had

boundary Σ × {0, 1} ∪ 𝜕Σ × [0, 1]. The result of surgering out the β-circles from Σ × {1} is a disk,
while the result of surgering out the α-circles αc

i
from Σ × {0} is the genus-k surface with one boundary

component. Thus 𝜕Y is exactly a closed genus-k surface.
In fact, there is a canonical identification of 𝜕Y with F (𝜕H). (Recall that 𝜕H is a pointed matched

circle.) After all, F (𝜕H) is formed by a disk with boundary 𝜕Σ, 1-handles whose attaching spheres are
the endpoints of the α-arcs, and a disk to close up the boundary component. The union of Σ × {1}
with β-circles surgered out and the annulus 𝜕Σ × [0, 1] is a disk in 𝜕Y with boundary 𝜕Σ × {0}; this is
the 0-handle in F (Z). Considering the α-arcs to be the cores of the 2-dimensional 1-handles which are
attached to the disk to form F (𝜕H), it follows that 𝜕Y � F (𝜕H).

An example of this is shown in Figure 2.9.
There is another interpretation, which introduces some canceling handles, which allows one to visu-

alize F (Z) a little more clearly, as opposed to as the union of three pieces (the two layers Σ × {0} and
Σ × {1}, with appropriate circles surgered out, and the cylinder 𝜕Σ × [0, 1]). See Figure 2.10. In some
more detail, the construction is as follows: As before, we consider Σ× [0, 1]. Consider a collar neighbor-
hood A1 ≔ [−ε, 0] × Z ⊂ Σ such that {0} × Z is identified with Z = 𝜕Σ. Recall that F (Z) is obtained
by attaching handles to some disk whose boundary is Z. Thus we may consider a tubular neighborhood
A2 ≔ Z × [0, 1] ⊂ F (Z). Then glue Σ × [0, 1] to [−ε, 0] × F (Z) with the obvious identification
A1 × [0, 1] = [−ε, 0] ×Z× [0, 1] = [−ε, 0] ×A2. Now attach 2-handles to each βi × {1} and αc

i
× {0}, as

before. We must cancel handles we added by gluing in [−ε, 0] × F (Z) In particular, each α-arc αa
i
× {0}

has a “counterpart” in F (Z), and so we obtain a circle by taking the union of each such arc with its coun-
terpart. We attach 2-handles along these circles. We finish off by attaching 3-handles (these are the top-
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Figure 2.9: The bordered 3-manifold Y associated to the bordered Heegaard diagram in Fig-
ure 2.6. Its boundary consists of three parts. First, we have the top layer, namely Σ × {1} with
the β-circle surgered out), which is just a copy of D2. Second, we have the cylinder (i.e., annulus)
Z × [0, 1]. Finally, we have the bottom layer, which is identified with the surface F (Z). Thus
𝜕Y = F (Z).

Figure 2.10: Another way, with some canceling handles, to see the bordered 3-manifold associated
to a bordered Heegaard diagram. The boundary is now a bit easier to see: It is just the genus-1
handlebody on the very right side of the diagram.
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and bottommost black arcs in Figure 2.10). This interpretation will be useful when we discuss the pairing
theorem in Section 4.6.

Just as how there is a Morse theoretic picture for 3-manifolds, so too is there one for bordered 3-
manifolds which shows that every bordered 3-manifold is represented by some bordered Heegaard dia-
gram. To see this, we must introduce some canceling handles. For details, see [LOT18, Lemma 4.9].

Furthermore, we have the following analogue of Proposition 2.2.

Proposition 2.9 ([LOT18, Lemma 4.10]). Any two bordered Heegaard diagrams for a bordered mani-

fold may be related by a sequence of isotopies of α-curves and β-circles not crossing 𝜕Σ, handleslides of α-curves

over α-circles and β-circles over β-circles, and (de)stabilizations in the interior of Σ.

2.4 Generators and admissibility
In this section, we describe the generators of the Heegaard Floer chain complexes associated to a pointed
or bordered Heegaard diagram, and state an important technical condition (“admissibility”) that dia-
grams must satisfy for Heegaard Floer homology to be defined. We start with the closed case before mov-
ing on to the bordered case.

Let H denote the pointed Heegaard diagram (Σ, ααα, βββ, z) representing a closed 3-manifold Y . Say Σ

has genus g.

Definition 2.10. A generator of H is a g-element set x = {x1, . . . , xg} of points onααα∩βββ such that each
α-circle contains exactly one xi and similarly for each β-circle.

These points x will be the generators for the chain complex for Heegaard Floer homology.
In later sections, we will be interested in holomorphic curves with codomain Σ × [0, 1] ×R. Let s be

the [0, 1]-coordinate and t the R-coordinate. Then the differential will be obtained by counting curves
with boundary onCα = ααα× {1} ×R andCβ = βββ× {0} ×R and with appropriate asymptotics at t = ±∞.
In particular, we consider homology classes inH2(Σ×[0, 1]×R) Then consider the following definition.

Definition 2.11. Let π2(x, y) denote the set of homology classes in H2(Σ × [0, 1] × R, Cα ∪ Cβ) which
converge to x and y at t = −∞ and t = ∞, respectively. We call elements of this set homology classes
connecting x to y.

Another way of thinking about this set is that, if we denote the closure [−∞,∞] of R by R, then
elements of π2(x, y) are (complex) curves in Σ × [0, 1] × R with boundary in the union of Cα, Cβ, x ×
[0, 1] × {−∞}, and y × [0, 1] × {∞}.

Definition 2.12. A region is a component of Σ \ (ααα ∪ βββ). Consider the projection of a homology class
B ∈ π2(x, y) to Σ. This gives a well-defined element of H2(Σ, ααα ∪ βββ) which is a linear combination
of regions. We call this linear combination the domain of B. The local multiplicity of B at a point
p ∈ Σ \ (ααα ∪ βββ) is the coefficient for the region containing p of the domain of B, and is denoted np(B).

Since we are only concerned with ĤF , we only want to consider homology classes whose domain
does not cross z, i.e., has local multiplicity 0 at z. Let π̂2(x, y) be the classes B in π2(x, y) such that this
condition is true for the associated domain of B. An element of π̂2(x, x) is a periodic class, and its
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domain is called a periodic domain. Finally, we call a homology class B positive if all of the coefficients
in its corresponding domain are nonnegative.

The differential will involve moduli spaces of curves in some fixed homology class B ∈ π2(x, y). In
particular, we must be able to count these moduli spaces. To ensure this, we must impose the following
admissibility condition.

Definition 2.13. The pointed Heegaard diagram H is (weakly) admissible if every nontrivial periodic
domain D which does not cross z has both positive and negative coefficients.

There is another definition of admissibility, known as strong admissibility, as in [OS04c]. However,
because we only care about ĤF and not any of the variants, we omit this definition. In particular, “ad-
missibility” always refers to weak admissibility for us.

Proposition 2.14 ([OS04c, Lemma 5.8]). A Heegaard diagram is isotopic to an admissible Heegaard

diagram, and two admissible Heegaard diagrams may be connected by a sequence of Heegaard moves such

that, at every stage, we have an admissible Heegaard diagram.

We now have the following reformulations of admissibility in terms of area forms. Its proof follows
from ideas in linear algebra; see, for example, [OS04c, Lemma 4.12].

Proposition 2.15. A pointed Heegaard diagram is admissible if and only if there is an area function A

on Σ such that A(P) = 0 for every periodic domain P.

The upshot of this is that admissible Heegaard diagrams have finitely many positive homology classes
B ∈ π̂2(x, y).

Proposition 2.16. If H is admissible, then for any two generators x and y, there are only finitely many

positive homology classes B ∈ π̂2(x, y).

Proof. SupposeB, B′ ∈ π̂2(x, y) are positive homology classes. ThenB−B′ is a periodic domain. Letting
A be an area function, as in Proposition 2.15, we have A(B) = A(B′). But there are only finitely many
positive domain of a given area. □

This will be useful because the moduli space in Section 3.2 of curves in a given homology class B will
be nonempty only if B is positive. The union over homology classes B of the moduli spaces will then be
a finite, hence well-defined, union.

The above definitions all have generalizations to the bordered case. In particular, now let H be the
bordered Heegaard diagram (Σ, ααα, βββ, z). In the bordered case, we let (Σ, ααα, βββ, z) be the result of attaching
an infinite cylindrical end 𝜕Σ×[0,∞) to 𝜕Σ. In particular,Σ is topologically equivalent to the punctured
surface Σ \ 𝜕Σ, and the αi’s in ααα are either αc

i
or αa

i
\ 𝜕αa

i
.

Definition 2.17. A generator of a bordered Heegaard diagram H is a g-element set x = {x1, . . . , xg} of
points on ααα ∩ βββ such that

• each α-circle contains exactly one xi;

• each β-circle contains exactly one xi; and

• each α-arc contains at most one xi.

21



Note that the first two conditions make up the definition for the closed case, as there are no α-arcs in
that case. Again, our chain complexes will be generated by these intersection points x. We denote the set
of all generators by 𝔖(H). Furthermore, if x is a generator, then we let o(x) ≔ {i : x ∩ α

a

i
≠ ∅} denote

the subset of {1, . . . , 2k} consisting of those arcs which are occupied by some xi.
In the bordered case, we would like to allow our holomorphic curves to have boundary on C𝜕 =

(𝜕Σ \ z) × [0, 1] × R. We remove z because the bordered case is in analogy to ĤF ; thus our curves may
not cross z. Then we may make the following definition.

Definition 2.18. The set of homology classes connecting x and y, denoted π2(x, y), is the set of
homology classes in H2(Σ × [0, 1] ×R, Cα ∪ Cβ ∪ C𝜕) which converge to x and y at t = −∞ and t = ∞,
respectively.

In analogy to the above definitions, we may call components of Σ \ (ααα∪βββ) regions. Furthermore, if
B ∈ π2(x, y), then its projection to Σ gives a linear combination of regions called the domain of B. The
local multiplicity is defined the same way as before.

Because we ask that the boundary of the homology classes (thought of as two-chains) in question
avoids z ∈ 𝜕Σ, we know that the local multiplicity at z is always 0. Thus we need not define π̂2(x, y)
in the bordered case, as it is the same as π2(x, y). Now we call elements of π2(x, x) periodic classes,
and their domains periodic domains. The definition of a positive homology class is the same as before,
namely that the coefficients in its corresponding domain are all positive.

We now have the following analogous admissibility condition.

Definition 2.19. A bordered Heegaard diagram is admissible if every nontrivial periodic domain has
both positive and negative coefficients.

At times, we will use a slightly weaker admissibility condition. To describe it, we must first define a
kind of domain called “provincial.”

Consider the domain of a class B ∈ π2(x, y). Its boundary is composed of three pieces, namely the
piece in ααα, the piece in βββ, and the piece in 𝜕Σ. Denote the pieces as 𝜕αB, 𝜕βB, and 𝜕𝜕B, respectively.
Furthermore, we orient them such that the domain of B has oriented boundary 𝜕αB + 𝜕βB + 𝜕𝜕B. We
may think of 𝜕𝜕B as an element ofH1(𝜕Σ, a), where a consists of the 4k endpoints of the α-arcs. (This is
the same as the set a of points of the pointed matched circle corresponding to the boundary of Σ.)

Definition 2.20. A class B ∈ π2(x, y) is provincial if 𝜕𝜕B = 0, i.e., if its domain contains no regions
bordering 𝜕Σ. A bordered Heegaard diagram is provincially admissible if every nontrivial provincial
periodic domain has both positive and negative coefficients.

Note that provincial admissibility is a weaker condition than admissibility, as we have a condition on
provincial periodic domains, rather than on all periodic domains.

We now have analogues to Propositions 2.14 and 2.15, as follows. Their proofs are exactly analogous
to the proofs of those statements.

Proposition 2.21. A bordered Heegaard diagram is isotopic to an admissible (respectively, provincially

admissible) bordered Heegaard diagram. Furthermore, two admissible (respectively, provincially admis-

sible) bordered Heegaard diagrams may be connected by a sequence of Heegaard moves such that, at every

stage, we have an admissible (respectively, provincially admissible) bordered Heegaard diagram.
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Proposition 2.22. A bordered Heegaard diagram is admissible (respectively, provincially admissible) if

and only if there is an area form A such that A(P) = 0 for every periodic (respectively, provincial periodic)

domain P.

The point of these admissibility definitions, as well as the area reformulation of admissibility. is to, as
in the closed case, attain some finiteness result. The area reformulation implies the following two results.

Proposition 2.23. Suppose that H is a provincially admissible bordered Heegaard diagram. Let x and y
be two generators. Let h ∈ H1(Z, a), where Z and a are as in Lemma 2.8. Then there are only finitely many

positive B ∈ π2(x, y) with 𝜕𝜕B = h.

Proposition 2.24. Suppose that H is an admissible bordered Heegaard diagram. Let x and y be two

generators. Then there are only finitely many positive B ∈ π2(x, y).

Remark 2.25. It is reasonable to ask when π2(x, y) (or, in the closed case, when π̂2(x, y)) is nonempty.
It turns out that this has to do with spinc structures on Y . In particular, each generator x gives rise to a
nonvanishing vector field, hence a spinc structure, on Y . (This uses an interpretation of spinc structures
due to Turaev [Tur97].) We denote this associated spinc structure as 𝔰z(x). Then one can show that
π2(x, y) ≠ ∅ (or, in the closed case, π̂2(x, y) ≠ ∅) if and only if 𝔰z(x) = 𝔰z(y). There is a similar spinc
condition for when there is a provincial domain connecting generators x and y.

2.5 Heegaard Floer homology
In this thesis, we will focus on the bordered case. But we will sketch out Lipshitz’s cylindrical refor-
mulation of Heegaard Floer homology for closed 3-manifolds, which will motivate our next chapter on
moduli spaces. From a strictly logical perspective, the following definitions and results would follow from
the technical details in Sections 3.1 to 3.5.

Fix a pointed Heegaard diagramH = (Σ, ααα, βββ, z) for the (closed) 3-manifoldY . SupposeH is (weakly)
admissible. (Recall that, for our purposes, we always mean weak admissibility when we talk about “ad-
missibility” for closed Heegaard diagrams.)

Define the chain complex ĈF (H) to be F2-vector space which is freely generated by 𝔖(H). The
differential will be defined by a count of a suitable moduli space of holomorphic curves. For this to make
sense, we must begin by picking a generic almost complex structure onΣ×[0, 1]×R. Now if we have two
generators x, y ∈ 𝔖(H), then we will consider certain holomorphic curves in Σ × [0, 1] ×R which limit
to the g-tuples of chords x× [0, 1] at t = −∞ and y× [0, 1] at t = ∞. (The exact conditions will be spelled
out in Section 3.2.) We may define the moduli space MB(x, y) to be the space of all such holomorphic
curves in the homology class B ∈ π̂2(x, y). There is a (computable) number ind(B) which is one more
than the expected dimension of the moduli space. We will discuss this more in Proposition 3.13.

The upshot, however, is that we may define a map 𝜕 : ĈF (H) → ĈF (H)

𝜕x ≔
∑︁
y

∑︁
B∈π̂2 (x,y)
ind(B)=1

#
(
MB(x, y)

)
· y.

By Proposition 2.16, we have only finitely many positive homology classes B ∈ π̂2(x, y) and which do
not cross the basepoint z. There are only finitely many generators, since there are only finitely many α-
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and β-curves. Finally, it turns out that MB(x, y) is compact when ind(B) = 1, hence is a finite set of
points. Thus #(MB(x, y)) makes sense, and so this sum is well-defined.

To show that 𝜕2 = 0 takes a bit of work. It requires that we count the points in index-two moduli
spaces. (This corresponds to counting “broken trajectories” in something like Hamiltonian Floer homol-
ogy, for example.) In particular, the coefficient of y in 𝜕2x is∑︁

w

∑︁
B1∈π̂2 (x,w)
ind(B1)=1

∑︁
B2∈π̂2 (w,y)
ind(B2)=1

#
(
MB1 (x,w)

)
· #

(
MB2 (w, y)

)
.

Showing that this is zero involves counting the ends of the index-two (i.e., one-dimensional) moduli
spaces which connect x and y. Roughly speaking, because this moduli space may be compactified into
a one-dimensional compact manifold, it has an even number of ends. (The only compact 1-manifolds
are S1 and [0, 1], both of which have an even number of ends.) Thus the above sum is zero (modulo 2),
which shows that 𝜕2 = 0.

What we have just shown, then, is the following lemma.

Lemma 2.26. The vector space (ĈF (H), 𝜕) is a chain complex, i.e., 𝜕2 = 0.

This is not an invariant of the 3-manifold Y which is represented by the Heegaard diagram H. How-
ever, its homology is.

Theorem 2.27. The homology ĤF (H) of H∗(ĈF (H), 𝜕) is an invariant of the 3-manifold Y which is

represented by the Heegaard diagramH. We denote this invariant, called theHeegaard Floer homology
of Y , by ĤF (Y ).

Showing invariance requires not only invariance of the choice of Heegaard diagram, i.e., invariance
under the pointed Heegaard moves of Proposition 2.9, but also invariance of the choice of almost com-
plex structure.
Remark 2.28. Variants of this definition may be obtained by allowing our holomorphic curves to cross
z. This leads to versions such as HF+, HF−, and HF∞. See Section 8 of [Lip06a]. Furthermore, we may
impose coherent orientations on the moduli spaces so as to get a theory in Z-coefficients, as in Section 6
of the same article. Since the bordered theory deals primarily with the hat-version with coefficients in F2,
however, we do not present the other variants here.

There is also a version which may be applied to knots sitting inside 3-manifolds, known as knot Floer
homology. This was first done by Ozsváth and Szabó in [OS04a] and, independently, by Rasmussen
in [Ras03]. This is done by equipping the Heegaard diagram with two basepoints. Recall the Morse
theory description of Y from H, which has one index-0 critical point and one index-3 critical point. By
considering the two flowlines from the index-3 critical point to the two basepoints, and then the two
flowlines from the two basepoints to the index-0 critical point, we obtain a knot. (Of course, choosing
2k basepoints allows us to obtain a k-component link.) Then a suitable generalization of Heegaard Floer
homology recovers the knot invariant �HFK (K).
Remark 2.29. As mentioned, the definition of Heegaard Floer homology which we present here follows
Lipshitz’s presentation in [Lip06a]. The original construction, by Ozsváth and Szabó, involved intersec-
tions of the two tori Tα ≔ α1 × · · · × αg and Tβ ≔ β1 × · · · × βg in the symmetric product Symg (Σ).
They counted holomorphic disks with boundary on these tori and which connect intersection points,
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i.e., elements of Tα ∩Tβ. See [OS04c, OS04b]. Since they used holomorphic disks rather than strips, the
notion of “connecting generators” is a simpler one; here, it simply means that u(±i) are both elements
of Tα ∩ Tβ, where u is a holomorphic disk with domain {|z| < 1} ⊂ C. This comes at the expense of
having to consider the g-fold symmetric product of Σ, which is a rather more complicated object than
Σ × [0, 1] × R.
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Chapter 3

Moduli spaces

The height, in feet, and the number of stories of a
building shall be determined based on the type of
construction, occupancy classification, and whether
there is an automatic sprinkler system installed
throughout the building.

2021 International Building Code, Section 504.1

This chapter contains all the technical results needed to properly define Heegaard Floer homology
in both the closed and the bordered case. In particular, the maps are defined by counting certain holo-
morphic curves with image in Σ × [0, 1] × R. As in many Floer contexts, we want to construct smooth,
compact manifolds of dimension 0 and 1 (cf. [Flo88c], [AD14], and [Par16], for example). The former
is a finite set of points, and thus may be counted in the definition of a map 𝜕 in the Floer complex. The
endpoints of the latter correspond to terms in 𝜕2. Compactness implies an even (i.e., 0 mod 2) number
of ends, so that 𝜕2 vanishes. Recall Section 2.5.

In general, the argument in that section, and this general Floer argument, is conducted with the fol-
lowing preliminary setup: First, we define a moduli space of certain kinds of holomorphic curves which
connect generators of the Floer complex (in this case, these are generators of the Heegaard diagram). We
show that this moduli space is generically a manifold by a transversality result. We also compute its ex-
pected dimension via an index formula. By allow some kind of “degeneration” or “broken trajectories,”
we can then compactify this moduli space. Finally, a gluing result implies that this compactification is
also a smooth manifold.

We begin this chapter by discussing the moduli space of Riemann surfaces in Section 3.1. In Sec-
tion 3.2, we then formally define the moduli space whose curves were counted in the definition of ĤF .
This moduli spaceM comprises holomorphic curves inW with boundary onCα∪Cβ = (ααα×{1}×R) ∪
(βββ×{0}×R) which “connect” generators of the Heegaard diagram. In this section, we also briefly discuss
transversality and index results. We spend more time discussing compactification, however, which uses
ideas from symplectic field theory. In Section 3.3, we define holomorphic buildings, which roughly cor-
respond to broken trajectories in other Floer theories. Afterwards, we prove compactness of the moduli
space of holomorphic buildings in Section 3.4. Finally, by restricting which holomorphic buildings are
actually allowed to appear as limits of elements of M in Section 3.5, we will show that M is a smooth
manifold which is the interior of a compact manifold.
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In Sections 3.6 to 3.9, we repeat this construction for the bordered case, beginning by defining the
moduli space in Section 3.6. Compactness requires a generalization of holomorphic buildings, known
as holomorphic combs, which we introduce in Section 3.7. We show that the moduli space of holomor-
phic combs is compact in Section 3.8. The compactification does not, unfortunately, produce a honest
manifold. However, we can ensure that we will have an even number of ends in the 1-dimensional case, as
in Theorem 3.53, which is sufficient for defining the bordered Heegaard Floer invariants. We conclude
with Section 3.9.1, in which we provide some examples of degenerations, which will be useful to keep in
mind later on in Chapter 4 when we define the bordered invariants ĈFA(Y ) and ĈFD(Y ).

3.1 The Deligne–Mumford moduli space
Our eventual goal is to define and count the points in certain moduli spaces of holomorphic curves. This
will allow us to define the differentials of our Floer complexes. But counting points requires that we may
compactify these moduli spaces of curves. This involves understanding all possible degenerations which
may occur when taking the limit of some sequence of curves in the moduli space. One possible family of
degenerations arises by degenerating the domain of these curves. Thus we begin by briefly discussing the
compactification of the moduli space of Riemann surfaces.

For our purposes, we allow our Riemann surfaces to have boundary. Furthermore, we allow for punc-
tures and other marked points. Let Z be the set of punctures and M the set of non-puncture marked
points. When convenient, we write S for S ∪ Z. Furthermore, when we want to emphasize that we are
considering the punctured surface S, we sometimes write ¤S.

We ask that our Riemann surfaces also have the following property which guarantees that they have
a finite automorphism group.

Definition 3.1. We say that a Riemann surface is stable if

2g + μ + b ≥ 3

on each componentC , where g is the genus ofC , μ is the number of points in (Z ∪M) ∩C , and b is the
number of components in 𝜕C .

For instance, a sphere with three marked points is stable since Möbius transformations are specified
by three points.

Let Mg,μ,b denote the moduli space of compact connected stable Riemann surfaces with genus g, μ
points in Z ∪M, and b boundary components.

Roughly speaking, the compactification of this moduli space is given by allowing nodes to form. A
nodal Riemann surface is just a smooth Riemann surface with specified double points. More formally,
we make the following definition.

Definition 3.2. A nodal Riemann surface is a smooth Riemann surface (S, j) equipped with an un-
ordered setD of unordered pairs {{d+1 , d−1 }, . . . , {d+k , d

−
k
}} such that, for each i, the points d+

i
and d−

i
are

either both in the interior or both on the boundary of S. Equivalently, we may think of a nodal Riemann
surface as the associated singular surface S/{d+

i
∼ d

−
i
}. The identified points d+

i
∼ d

−
i

are called nodes.

To be completely precise, then, we may specify a nodal Riemann surface as (S,M, Z,D, j). We will
almost never do so, however.
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The uniformization theorem implies that we may give any stable Riemann surface S a unique com-
plete hyperbolic metric hS of finite volume which is in the same conformal class as the almost complex
structure j on S. We call this metric the Poincaré metric. This detail helps us navigate the later proofs of
compactness, where we distinguish between “thick” and “thin” parts of S. We will not always be partic-
ularly explicit about it, but when needed we will always assume our Riemann surface comes equipped
with the Poincaré metric. For now, we note simply that punctures correspond to cusps (or, in the case of
boundary punctures, half-cusps) under hS .

Note that nodes may be either in the interior or on the boundary. They occur when the complex
structures jn of a sequence (Sn, jn) → (S, j) collapses at a geodesic circle or arc with boundary on 𝜕Sn.
The length of a collapsed geodesics goes to zero. Equivalently, the complex structures form infinitely long
necks at these geodesics. See, for example, Figures 3.1 and 3.2.

d
+ d

−

Figure 3.1: Collapsing along a circle. On the top left, we have (S1, j1). The top right shows (Sn, jn)
for some n. The geodesic circle has shrunk in length. In the limit (bottom right), the geodesic arc
collapses to a point. The bottom left figure gives an interpretation of this nodal surface as a sphere
with a double point d+ ∼ d

− .

We denote the moduli space of compact connected stable Riemann surfaces with genus g, μ punc-
tures/marked points, and b boundary components by Mg,μ,b. This notation is justified by the Deligne–
Mumford compactness theorem (Theorem 3.5) below.

Before discussing the compactness theorem below, however, we introduce a few notions. The com-
pactification Ŝ of a punctured Riemann surfaceS is obtained by taking the oriented blow-up at the punc-
tures and including the “circle at infinity” (for interior punctures) or the “arc at infinity” (for boundary
punctures). This may be seen in Figure 3.3.

Often, we consider the surface SD obtained by taking the oriented blow-up at the double points d±
i

and gluing the boundary circle Γ+
i

of d+
i

to the boundary circle Γ−
i

of d−
i

for each i. This surface is called
the deformation of S. See Figure 3.4.
Remark 3.3. For interior nodes, we may also consider an added piece of data known as a “decoration.”
This decoration determines the gluing between Γ+

i
and Γ−

i
. Roughly speaking, this dictates how much

we “rotate” one end when gluing it to the other, and is necessary to prove general SFT compactness the-
orems like Theorem 3.21, which says that a certain family of maps into a cylindrical manifold is compact.
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d
+

d
−

Figure 3.2: Similarly, collapsing along the arc shown above results in a nodal surface in which a
disk component is bubbled off.

Figure 3.3: The compactification of a twice-punctured Riemann surface. The circle and arc at
infinity are colored red.

However, the case which we will be interested in for the remainder of this chapter will not require decora-
tions (see Remark 3.20), as it involves maps into a specific cylindrical manifold. But we may also upgrade
everything in this section to moduli spaces of decorated Riemann surfaces. See [BEH+03, Section 3.3]
for details.

We now turn to a brief discussion of Deligne–Mumford compactness, first introduced in [DM69],
which ensures that any sequence of (smooth or nodal) stable marked Riemann surfaces converge to a
nodal Riemann surface S.

Definition 3.4. We say that a sequence {(Sn, jn)} of stable nodal marked Riemann surfaces converges
in the Deligne–Mumford sense to a limit surface (S, j) if there are diffeomorphisms φn : SD → S

D
n

such that

• φn takes marked points in S to marked points in Sn;
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d
−
1

d
+
1

d
−
2d

+
2

=

blow up

glue

Figure 3.4: The top left shows a Riemann surface with one interior node and one boundary
node. (The bottom left diagram shows this same surface with double points identified. This is
the “usual” way of visualizing a nodal Riemann surface.) Blowing up gives the top right diagram.
The deformation is shown in the bottom right.

• all nodes in S come either from nodes which were already in the Sn’s or by degenerating the surfaces
Sn along geodesics (either closed geodesics or geodesic arcs with endpoints on 𝜕Sn);

• all punctures in S come from punctures which were already in the Sn’s; and

• the pullback metrics φ∗nhSn converge to the Poincaré metric hS on S.

Theorem 3.5 (Deligne–Mumford compactness for surfaces with boundary). Consider a sequence of sta-

ble Riemann surfaces (Sn, jn) with punctures and marked points in the interior and on the boundary. Sup-

pose the Sn’s all have the same topological type and number of punctures/marked points, i.e., belong to the

same moduli space Mg,μ,b for some g, μ, and b. Then we may find subsequence which converges to a stable

nodal Riemann surface with marked points.

This states, more or less, that Mg,μ,b is a compact topological space whose topology is given by Defi-
nition 3.4. Thus the only degenerations allowed come from degenerating (or collapsing) at a closed circle
or an arc with boundary on the boundary of the Riemann surface. A more formal statement of Deligne–
Mumford compactness for Riemann surfaces with boundary may be found in [Wen08, Section 3.3], and
a proof may be found in [SS92, Theorem 5.7.1].
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For example, if we add at least one marked point to the Riemann surfaces in Figure 3.1, then it would
be an example of Deligne–Mumford convergence. Note that the underlying surface, with g = 1 and
μ = b = 0, is not actually stable. Similarly, if we were to add a marked point to the Riemann surfaces in
Figure 3.2, then we would have an instance of convergence in M1,1,1. (Indeed, the geodesic arc which is
drawn in that figure would only be geodesic with respect to the hyperbolic metric if we already had an
interior marked point, or two boundary marked points.)

3.2 The moduli space of holomorphic curves in Σ × [0, 1] × R

We will now define the moduli space which will be used for defining the differential for Heegaard Floer
homology. Let H = (Σ, ααα, βββ, z) be a Heegaard diagram where Σ has genus g. As mentioned before, the
differential will be defined by counting certain curves in Σ × [0, 1] × R with boundary on Cα ∪ Cβ and
which converge to generators at t = ±∞. In this section, we define the relevant moduli space.

We want to only count holomorphic curves, so we must put an almost complex structure on Σ ×
[0, 1] × R. To do so, we first make the following definitions.

Let πD : Σ × [0, 1] × R → [0, 1] × R and πΣ : Σ × [0, 1] × R → Σ denote the obvious pro-
jections. We let s and t denote the [0, 1]- and R-coordinates, respectively. Furthermore, fix a point zi
in each component of Σ \ (ααα ∪ βββ). Let ωΣ be a symplectic form on Σ, and consider a split symplectic
form ω = π

∗
Σ
ωΣ + π∗D(ds ∧ dt) on Σ × [0, 1] × R. Let jΣ be an almost complex structure on Σ which is

ωΣ-compatible.

Definition 3.6. An almost complex structure J onΣ× [0, 1] ×R is admissible if it satisfies the following
requirements:

(J-1) J is tamed by ω.

(J-2) J = jΣ × jD is a split almost complex structure in a small cylindrical neighborhood of the fiber
{zi} × [0, 1] × R.

(J-3) The R-action on Σ × [0, 1] × R defined by translation in the t-coordinate is J -holomorphic.

(J-4) J (𝜕/𝜕t) = 𝜕/𝜕s.

(J-5) J preserves T (Σ × {(s, t)}) for all (s, t) ∈ [0, 1] × R.

In the second condition above, we shrink the neighborhoods so that they do not intersect (ααα ∪ βββ) ×
[0, 1] × R. Since J (𝜕/𝜕t) = 𝜕/𝜕s, we call the vector field 𝜕/𝜕s the Reeb vector field. (Compare this
with [BEH+03, Section 2.1]. From now on, we will always assume Σ × [0, 1] × R is equipped with an
admissible almost complex structure, unless otherwise specified.

Since we want our curves to converge to generators at t = ±∞, we allow their domains to have punc-
tures. Thus we make the following definition.

Definition 3.7. A source (S, j) is a Riemann surface with boundary and with finitely many punctures
on the boundary such that each puncture is labeled either + or −.

We consider two sources to be equivalent if there is an orientation-preserving, label-preserving diffeo-
morphism between them. Note that S need not be connected.

Fix an admissible J . Then the curves which will factor into our definition of the differential are J -
holomorphic maps u : (S, 𝜕S) → (Σ × [0, 1] × R, Cα ∪ Cβ) which satisfy the following:
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(M-0) S is smooth, i.e., not nodal.

(M-1) The boundary 𝜕S is mapped to Cα ∪ Cβ.

(M-2) u is an embedding.

(M-3) The energy of u, as defined below, is finite.

(M-4) πD ◦ u is nonconstant on every component of S.

(M-5) For every t ∈ R and every curve αi, u−1(αi × {1} × {t}) consists of exactly one point. Similarly,
u
−1(βi × {0} × {t}) consists of exactly one point.

(M-6) For every positive puncture q, we have limz→q(t ◦ u) (z) = ∞. Here t is the coordinate projection
Σ × [0, 1] × R → R. Similarly, for every negative puncture q, we have limz→q(t ◦ u) (z) = −∞.

We call this last condition weak boundary monotonicity. (We will define strong boundary mono-
tonicity later on, in the bordered case.)

Note by [HWZ96, Theorem 2.8] or [Abb04, Proposition 4.5] that a holomorphic map satisfying
(M-0)–(M-6) converges to x × [0, 1] for some generator x at ∞. After all, each positive puncture should
limit to a characteristic chord, that is to say, to a trajectory of the Reeb vector field. In this case, since
(M-6) implies that t → ∞ near a positive puncture, this means that each positive puncture should limit
to some chord xi × [0, 1] × ∞. (M-5) implies that each xi should be an element of ααα ∩ βββ and, since there
are exactly g positive punctures and g negative punctures, that the set of all xi’s should be a generator of
the Heegaard diagram. The same is true at −∞.

This means that πD ◦ u is a g-fold branched covering map.
Now we introduce the definition of energy which is used in (M-2), and in the remainder of this work.

We are working with holomorphic curves inΣ×[0, 1]×R, which is an instance of a cylindrical symplectic
manifold V × R. (In our case, V = Σ × [0, 1].) The pullback of the symplectic form ωΣ on Σ to V

has rank two. Its kernel is generated by 𝜕/𝜕s, which is called the Reeb vector field. The condition that
J (𝜕/𝜕t) = 𝜕/𝜕s then says that the almost complex structure maps the vector field which generates the
R-translations (i.e., the translations in the cylindrical direction) to the Reeb vector field. This is a standard
technical requirement for studying pseudoholomorphic curves on cylindrical manifolds. Details may be
found in [BEH+03, Section 2].

Definition 3.8. The energy of u : S → V × R = Σ × [0, 1] × R is given by the formula

E(u) ≔
∫
S

(πΣ ◦ u)∗ω + sup
ϕ

∫
S

(ϕ ◦ t ◦ u) dt ∧ (πV ◦ u)∗λ,

where ω is the symplectic form on Σ and πV is the projection toV = Σ × [0, 1]. The supremum is taken
over all functions ϕ : R → R≥0 with compact support and integral 1. The first term in the energy is
called the ω-energy; the second is called the λ-energy.

In particular, we “forget” the energy in the R-direction. After all, since u projects to a covering of
[0, 1] × R, hence of R, the energy in the R-direction is infinite.
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Remark 3.9. We will mostly be concerned with energy only insofar as to whether or not it is bounded.
In our case, the λ-energy will always be bounded. After all, roughly speaking, the λ-energy is obtained by
computing the maximum “width” of u (in the s-direction) over some interval of R. In particular, since
u is a g-fold branched cover of [0, 1] × R, it follows that this width is bounded by g. That is to say, the
λ-energy is always bounded by the genus g of the Heegaard diagram.

Finally, we make the following definition.

Definition 3.10. The holomorphic curve u stable if

• not all components of the curve are twice-punctured disks which project down to a single point in
Σ; and

• every connected component on which u is constant is stable.

Define M̃B(x, y; S) to be the space of holomorphic curves from a source S which satisfy (M-0)–(M-
6), connect the generators x and y, and belong to the homology class B ∈ π2(x, y), all quotiented out
by the automorphisms of S. The R-action on Σ × [0, 1] × R, namely the translation action, induces an
R-action on this moduli space. This action is free if u is stable.

Thus we may define MB(x, y; S) to be the quotient M̃B(x, y; S)/R.

Lemma 3.11. If M̃B(x, y; S) is nonempty, then B is a positive homology class. That is to say, all of the

coefficients in its corresponding domain are nonnegative.

Proof. Suppose u is an element in M̃B(x, y; S). Its multiplicity at a region R is exactly equal to the in-
tersection number u · ({p} × [0, 1] × R) for some point p ∈ R. Since J (𝜕/𝜕t) = 𝜕/𝜕s by (J-4), we
know that the fiber {p} × [0, 1] ×R is J -holomorphic. Thus this is the intersection number between two
J -holomorphic curves, which is positive by [MW95, Theorem 7.1]. □

Proposition 3.12. There is a residual set Jreg of almost complex structures for which the moduli spaces

M(x, y; S) are transversally cut out by the 𝜕-equations, hence are smooth manifolds. In particular, by the

Baire category theorem, this is actually a dense set of almost complex structures.

In this context, a residual set is one which contains a countable intersection of open dense sets. The
proof is similar to the proof of [MS12, Theorem 3.1.6].

If J is an element of Jreg, then we say that it achieves transversality. The above proposition states
that generic J achieve transversality, so we may always assume this property.

Given thatM(x, y; S) are smooth manifolds, we may ask what their expected dimension is. To define
this, we define the Euler measure of a region R in Σ \ (ααα ∪ βββ) to be

e(R) ≔ χ (R) − 1
4
· #(acute corners in R) + 1

4
· #(obtuse corners in R),

where χ (R) is the Euler characteristic and where a “corner” is an intersection of an α- and β-curve. Note
that we implicitly choose a Riemannian metric here so that our α- and β-curves meet at right angles.
The difference between an acute and obtuse corner is illustrated in Figure 3.5. (The usual definition of
the Euler measure is 1/2π times the integral over R of the curvature. By the Gauss–Bonnet theorem,
the definition above is equivalent to this usual, less combinatorial definition.) We extend by linearity to
define the Euler measure of any linear combination of regions, i.e., of any domain.
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Figure 3.5: The source S appears projects onto some regionR inΣ, shown here as the shaded area.
The left side shows an obtuse corner, while the right side shows an acute corner. Counting such
corners gives the Euler measure.

Proposition 3.13 ([Lip06a, Corollary 4.3]). The expected dimension ind(B, S) of M̃B(x, y; S) is

ind(B, S) = g − χ (S) + 2e(D(B)),

where D(B) is the domain associated to the homology class B. Recall we assume that maps in M̃B(x, y; S)
are embedded. If M̃B(x, y; S) is nonempty, then

χ (S) = g −
(

g∑︁
i=1

nxi (B) + nyi (B)
)
+ e(D(B)),

where xi and yi are the particular points in the generators x and y, respectively, and where np(B) denotes the

local multiplicity of B at the point p ∈ Σ. Thus the expected dimension depends only on B, and we write

ind(B) ≔ dimM̃B(x, y; S) =
(

g∑︁
i=1

nxi (B) + nyi (B)
)
+ e(D(B)).

Now we may define a moduli space which is source-independent. In particular, define

χemb(B) ≔ g −
(

g∑︁
i=1

nxi (B) + nyi (B)
)
+ e(D(B)),

so that χ (S) = χemb(B) wheneverM̃B(x, y; S) is nonempty. Then define the source-independent moduli
space

M̃B(x, y) ≔
⋃

χ (S)=χemb (B)
M̃B(x, y; S).

We define M(x, y) by quotienting out by the translation action in the R-coordinate.
Later on, in the definition of Heegaard Floer homology in Section 2.5, we will define the differen-

tial by counting curves in MB(x, y) where B ∈ π̂2(x, y) ranges over all positive homology classes with
ind(B) = 1. We can do this because Proposition 2.16 guarantees that there are only finitely many B to
consider.
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3.3 Holomorphic buildings
To compactify this moduli space, we must allow two kinds of degeneration: First, we must allow our
sources to degenerate into nodal sources. For example, the limit of a sequence of maps un : (S, jn) →
Σ × [0, 1] × R could have nodal domain if the Riemann surface structure jn “pinches down” at some
point in S. These kinds of degenerations, known as Deligne–Mumford degenerations, were explained in
Section 3.1. Second, we must allow degeneration at t = ±∞. This degeneration occurs when the maps
themselves “escape to infinity” near the punctures or nodes, and is indicated in Figure 3.6. In particular,

t = −∞

t = −∞

t = ∞

t = ∞

Figure 3.6: Consider the sequence of maps in Figure 3.2. This forms a boundary node, as shown
on the left side above. If the t-coordinate approaches ∞ from one side of the node (namely the
“genus-1 side,” i.e., the side which does not belong to the degenerated disk), then we get the dia-
gram on the right, where the degenerated disk escapes to infinity.

any two points of a single holomorphic curve are necessarily a finite distance apart. Furthermore, the
energy is concentrated on a bounded portion of this curve, and thus vanishes as t → ±∞. Holomorphic
buildings let us consider curves where some parts go to infinite relative to other parts and where the energy
may accumulate at t = ±∞.

This second kind of degeneration uses ideas from symplectic field theory, namely the definition of a
holomorphic building as introduced in [EGH00] and [BEH+03].

We will only need to use holomorphic buildings in Σ× [0, 1] ×R, but in general one may define holo-
morphic buildings in cylindrical almost complex manifoldsV ×R, as well as in manifolds with cylindrical
ends. In particular, the domains of our holomorphic maps in this section are once again sources as in Def-
inition 3.7, as opposed to the more general setting of stable nodal Riemann surfaces with punctures and
marked points that we considered when discussing Deligne–Mumford compactification. (The main dif-
ference is that we do not have marked points or interior punctures.) See Sections 7 and 8 in [BEH+03],
or Chapter 3 in [Abb14], for more details about the general case.

Definition 3.14. Consider a sequence of stable maps uk ∈ MBk (xk−1, xk; Sk) for k = 1, . . . , N . Let Ŝk
denote the compactification of Sk and �πΣ ◦ uk the compactification ofπΣ◦uk. We may form the piecewise
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smooth surface
Ŝ ≔ Ŝ1 ∪ Ŝ2 ∪ · · · ∪ Ŝk.

If the maps �πΣ ◦ uk glue to a continuous map on Ŝ, then we call the sequence {uk} aholomorphic build-
ing of height N , which we denote U .

In this context, we call the uk’s the stories of the building, and call k the level. Furthermore, we say
that Ŝ is thepreglued sourceofU . Ifuk has homology classBk, thenU has homology classB1∗· · ·∗BN ∈
π2(x0, . . . , xN ).
Remark 3.15. In this context, we allow our sources Sk to be nodal Riemann surfaces. In general, when
we want to explicitly include or exclude nodal sources as a possibility, we will say so. However, when
the distinction is unimportant, we will sometimes just talk about “holomorphic curves” and “sources”
without mentioning whether they are smooth or nodal.

Intuitively, a holomorphic building is a sequence of holomorphic maps such that the asymptotics
of uk at the positive punctures agree with the asymptotics of uk+1 at the negative punctures. (Strictly
speaking, a holomorphic building also comes with an ordering of all the punctures, but we omit this
detail here.) See, for example, Figure 3.7.

R

R

0 1

Figure 3.7: The components in blue lie on the cylinderCβ = β× {0} ×R, while the components
in red lie on the cylinderCα. Let x be the generator corresponding to the black dots at the bottom.
(Note that black dots on the same horizontal line correspond to the same point in Σ; points in x
are elements ofααα∩βββ.) Letw be the generator corresponding to the gray dots, and y the generator
corresponding to the white dots. Then this shows a two-story holomorphic building from x to y
in homology class B1 ∗ B2, where the first story shows a curve in MB1 (x,w) and the second story
shows a curve in MB2 (w, y).

Another way to think of a holomorphic building is as a nodal curve with some of the nodes removed.
(These deleted nodes correspond to the positive/negative ends of consecutive stories which glue together.)
See Figure 3.8.
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Figure 3.8: This diagram does not show the [0, 1]-factor. The bottom layer consists has three
points x1, x2, x3 in black, while the top layer has three such points y1, y2, y3. Then this diagram
goes from x to y, and we may think of it as a curve whose domain is the nodal curve whose double
points are exactly those points labeled with white (unshaded) dots the diagram above. Thus we
may think of a holomorphic building as the nodal curve below, with punctures corresponding to
the black dots and removed-nodes corresponding to the white dots.

Consider two holomorphic buildings of height 1, i.e., two stable holomorphic curves u and u′ with
source S and S′, respectively. They are called equivalent if there is a diffeomorphism between S and S′
which preserves the complex structure and such that u′◦ϕ and u are the same up to a translation in theR-
direction. In general, if U and U ′ are height-N holomorphic buildings, then we call them equivalent if
their respective stories are equivalent and if these equivalences commute with the attaching maps between
stories. (These attaching maps were implicit in our definition of a holomorphic building. They are used
to glue the Ŝk’s to form the preglued surface Ŝ.)

We now define moduli spaces of holomorphic buildings, as well as a notion of convergence within
these spaces.

Definition 3.16. The moduli space of all (possibly nodal) holomorphic buildings in the homology class
B and with asymptotics x at −∞ and y at ∞, and whose preglued sources have the same topological type
as S, is denoted by MB(x, y; S).

Definition 3.17. Consider a sequence {Un} of holomorphic buildings of height at mostN . We say they
converge to a building U of height N if the following properties hold.

• The deformations SD
i

of the underlying surfaces Sn of Un converge to the deformation S
D of the

underlying surface S of U in the Deligne–Mumford sense.

• Ifφi is the diffeomorphism from S
D to SDn coming from the Deligne–Mumford convergence, then

the projection of um ◦ φn converges uniformly to the projection of u on Σ × [0, 1].

• Let Γi be the set of boundary circles of the n-th level of the building U . Let Cℓ be the union of
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the components of SD,r \ ⋃
Γn which are on the ℓ -th level, where ℓ = 1, . . . , N . Then there exist

sequences of real numbers cℓn for n ≥ 1 such that (t ◦ un ◦ φn − t ◦ u − c
ℓ
n) → 0 in C0

loc.

This last condition more or less says that we can think of the ℓ -th level ofU as the limit ofR-translates
of levels of the Un’s. In the case when the Un’s are all honest curves, and not just buildings, note that
c
ℓ+1
n − c

ℓ
n → ∞ as n → ∞. Intuitively, this says that consecutive levels in a holomorphic building are

infinitely far apart in the R-direction, since the R-translates which converge to the different levels of the
limit building differ by a larger and larger amount.

As the notation suggests, the moduli spaceMB(x, y; S) is compact; thus holomorphic buildings give
a compactification of our moduli space of holomorphic curves.

3.4 Compactification via holomorphic buildings
We now have the following statement of compactness. This is the relative version of [BEH+03, Theorem
10.1], i.e., with sources with boundary. Alternatively, see [Abb14, Theorem 3.20] for a formal proof.

Theorem 3.18 (SFT compactness). For every E0, the space of holomorphic buildings in MB(x, y; S) with

energy bounded above by E0 is compact. Since the moduli space has a metric [BEH
+

03, Appendix B.2], we

can restate this as follows: Any sequence {Un} of holomorphic buildings inMB(x, y; S)∩{U : E(U ) ≤ E0}
has a convergent subsequence, and the limit has homology class B.

Since we may handle convergence of each level separately, it is enough to prove the above theorem
in the case of height-1 holomorphic buildings, that is to say, in the case that each Un = un is a stable
holomorphic curve.

Consider sources (Sn, jn) of un with punctures and nodes. (All of the Sn’s have the same topological
type, namely that of S, but we may vary the Riemann surface structure.) Recall that we think of nodes
as identified double points. We may then delete each node of Sn, so that Sn is assumed to be smooth, and
carry a set Mn of marked points consisting of the pre-existing punctures and nodes of Sn. This is fine
because nodes (and hence all the points inMn) are treated like punctures, at least from the perspective of
hyperbolic metrics and the Deligne–Mumford moduli space.

The upshot of this is that we may prove Theorem 3.18 for stable holomorphic curves whose domains
are smooth, punctured (i.e., marked) Riemann surfaces. Note that, even in this case that un has smooth
source, the limit un → U might have nodal source. Any nodes which form in the limit are still called
“nodes.”

Thus it is enough to prove the following statement.

Theorem 3.19. Consider a sequence {un} of holomorphic curves inMB(x, y; S) with energy bounded above

by E0. (As per our remark above, the source S may have some marked points.) Then there is a subsequence

which converges to a stable holomorphic building U of finite height N and in the homology class B.

Proof. We begin with an intuitive idea of the proof. Deligne–Mumford compactness says that the (pos-
sibly nodal) limit surface S∞ = lim Sn exists. It is possible to obtain a gradient bound which ensures that
in the “thick” part of S∞ Roughly speaking, the “thick” part of S∞ consists of the points x where there is
a positive lower bound on the injectivity radii at x of the metrics hn. This basically means that we never
“pinch” the metric (or the complex structure) at points in the thick part of S∞.
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By contrast, the “thin” part of S∞ consists exactly of (neighborhoods of) nodes and punctures. A
node is adjacent to two components of the thin part. At each component, the limit map U approaches
either a point in Σ× [0, 1] ×R or a holomorphic strip modeled over a Reeb chord xi × [0, 1] at the node.
It then suffices to show that U takes the same value on both sides of the node, that is to say, it limits to
the same value as it approaches the node from either component. The only possible issue is that there
may be some energy which is lost between the two sides. This comes up if there were actually a bubbled-
off cylinder or strip which forms at the node. By adding enough marked points to the original surface,
we may make sure that this component is seen in the Deligne–Mumford limit S∞. The same holds true
for convergence over punctures. Finally, the level structure of the limit is based on how degenerated
components of the Deligne–Mumford limit, which have positive/negative ends at the nodes in the limit
surface, attach to other components.

Given this brief overview, we now turn to the actual proof.
Step 1. The limit surface. We think of our holomorphic curves un as having domain Sn with marked

point set Mn. Each Sn has the same topological type S, but the complex structure jn may vary. Add
marked points (as needed) to stabilize the surfaces Sn.

Fix a point pr in each region r of Σ. We may pick pr generically, so that they are regular values of
πΣ ◦ un for all n. Let {qi,r,n} = (πΣ ◦ un)−1(pr) ⊂ Sn be the preimages, and add them to the marked
point setMn of Sn. These marked points implicitly keep track of the homology class B, since the number
of points qr,i,n for each region r tells us how many times un crosses the region.

Deligne–Mumford compactness implies that the surfaces Sn converge to a nodal Riemann surface
S∞. This convergence comes with certain maps φn : S∞ → Sn. (Technically, these maps are between the
deformations of S∞ and Sn, but it is more useful for now to think of S∞ and Sn as punctured surfaces,
rather than as their deformations.) We also have a Poincaré metric hn on each Sn. Recall that the pullback
metrics φ∗nhn converge to the Poincaré metric h∞ on S∞. (Note that hyperbolic metrics depend not only
on the complex structure jn, but also the marked point set.)

Step 2. Thick-thin decomposition. Let hn be the Poincaré metrics associated to jn and our marked
point sets Mn. We have a Poincaré metric h∞ on S∞ which is the limit of the hn’s. With ρ(x) denoting
the injectivity radius at x with respect to this limit metric, we define

Thickε(S∞) ≔ {x ∈ S∞ : ρ(x) ≥ ε} Thinε(S∞) ≔ {x ∈ S∞ : ρ(x) < ε}

to be the ε-thick and ε-thin parts, respectively. It turns out that, for ε < sinh−1 1, the ε-thin part con-
sists entirely of finite cylinders and punctured disks, as well as finite strips and punctured half-disks. See
Figure 3.9 below. Each finite cylinder C has a unique closed geodesic of length 2 inf x∈C ρ(x). We call

Figure 3.9: These are components of the ε-thin part of S∞. On the left is a finite strip with short
geodesic arc Γ, indicated by the red arc. On the right is a punctured half-disk.

this geodesic a short geodesic. Similarly, the finite strips have short geodesic arcs with endpoints on the
boundary. There are finitely many of these geodesics, and they are all pairwise disjoint. See [Hum97,
Chapter IV.4] for details.
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When not specified, we will always assume that ε < sinh−1 1 when we are discussing ε-thick and
ε-thin parts. The upshot is that this implies that every connected component of Thinε(S) is either a
small collar neighborhood of a short geodesic (as in Figure 3.9(a)) or a small cusp neighborhood of a
puncture (as in Figure 3.9(b)). Note that we only have punctures on the boundary, since S is a source (cf.
Definition 3.7), so our “cusp neighborhoods” are actually half-cusp neighborhoods which, topologically,
look like [0,∞) × [0, 1] instead of [0,∞) × S

1.
Step 3. Convergence over the thick part. Let Γj ’s denote the short geodesics (corresponding to the

nodes and interior punctures) or embedded arcs with endpoints at 𝜕S (corresponding to the bound-
ary punctures). Strictly speaking, the curves Γj , which we call special curves, should correspond to the
blown-up nodes and punctures in the deformation. But these special curves have length 0 in the deforma-
tion too, so it doesn’t hurt to just think of them as points.

We have uniform bounds on ∥∇(un ◦φn) (x)∥ for all x ∈ S∞ \⋃ Γj . This bound implies convergence
over the thick part. In particular, we certainly have a subsequence which converges with all derivatives
over the ε-thick part for some fixed ε > 0. (This uses a result of [Gro85]. A proof may also be found
in [MS12, Theorem 4.1.1].) After translating in the R-direction, we may apply Arzelà–Ascoli to extract
a subsequence which converges in the C∞

loc-topology away from the punctures and the special geodesics,
i.e., on S∞ \ ⋃

Γj . Say the limit is some holomorphic map u.
Step 4a. Convergence over nodes. Now we must prove convergence on the thin part of S. For small

enough ε, this thin part consists of small neighborhoods of two kinds of points. The first kind are nodes
in S, which were created by taking the limit i → ∞ by shrinking some of the short geodesics (i.e., the
closed geodesic curves in a finite cylinder or the geosdesic arcs in a finite strip) on the sources Si. The
second kind are (boundary) punctures in S, which were already there before taking the limit. In this step,
we tackle the first case.

A node q is adjacent to two components C+ and C
− of Thick(S∞), as seen in Figure 3.10. If u is

C
+

C
−

Figure 3.10: The ε-thin part of S∞ consists of a small neighborhood of the node indicated above.
(Topologically, this is just two disks glued together at a point on the boundary.) Outside of this
neighborhood is the ε-thick part of S∞. As ε → 0, the thick portion approaches the node in two
different components, labeled C+ and C− above.

bounded near q, thought of as a point of C+, then the removable singularities theorem (see [MS12, The-
orem 4.1.2]) implies that u extends continuously over q on the C

+
side. Otherwise, it approaches a holo-

morphic strip xi × [0, 1] × [R,∞) or xi × [0, 1] × (−∞, R] modeled over some characteristic chord
[HWZ96, Theorem 2.8]. (In general, it may approach any Reeb orbit; here, since the Reeb vector field is
𝜕/𝜕s, this is the only possible limit. In particular, since there are no periodic orbits, interior nodes must
converge to a single point.) The same is of course true if we think of the node as a point of C−.

Let γ± be the asymptotic limits over C± of u at the node. We would like to show that γ+ = γ
−.

This node appeared by degenerating a component of Thinε(Sn) along a circle (if the node is in the
interior) or an arc with boundary on 𝜕Sn (if the node is on the boundary). In particular, there is a confor-
mal parameterization near q by some interval times either S1, if q is in the interior, or [0, 1], if q is on the
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boundary. See Figure 3.11. More precisely, let T ε
n be the component of the ε-thin part of S∞ (equipped

n = 1 n = 10 n = 100

× [0, 1] × [0, 1] × [0, 1]

Figure 3.11: This shows how the parameterization g
ε
n : [−N ε

n, N
ε
n] × [0, 1] → T

ε
n changes as n

increases. Note that “collapsing” along the red arc is the same as stretching into an arbitrarily long
strip. After all, the [0, 1]-factor corresponds to the direction perpendicular to the red arc. The
component [−N ε

n, N
ε
n], which is depicted by the green intervals above, becomes long in compar-

ison to this [0, 1]-factor, since the red arc becomes short. (In the interior node case, which is less
important for our purposes, we stretch into an arbitrarily long cylinder.)

with the metric φ∗nhn, not with the metric h∞) which contains q. This component is a collar neighbor-
hood of the degenerating (i.e., collapsing) circle or arc. There is a conformal map

g
ε

n : Aε

n ≔ [−N ε

n, N
ε

n] × [0, 1] → T
ε

n.

(Again, we replace S1 with S1 in the case that q is in the interior; we will stop repeating this, since this is
the less relevant case for us, but it continues to hold true for the rest of this step.) Note that applying un,
and projecting to Σ × [0, 1], limits to our Reeb chords:

lim
ε→0

lim
n→∞

(πΣ × s) ◦ un ◦ φn ◦ gεn |±N ε
n×[0,1] = γ

±
.

Loosely speaking, after all, we approach q from C
± when we evaluate this map at ±N ε

n × [0, 1].
Denote the map (πΣ × s) ◦ un ◦φn ◦ gεn by vεn. We may ask that vεn has a uniform gradient bound over

A
ε
n. As such, we may choose some εn → 0 and a subsequence (which we still denote with subscript n)

such that
lim
n→∞

v
εn
n

(
±N εn

n × [0, 1]
)
= γ

±
.

For large n, the maps vεnn thus define a homotopy between γ+ and γ−. We can assume that the homology
class of this homotopy is independent of n, so call this homotopy Φ.

We have two cases now: Either we have lost energy between γ
+ and γ− (corresponding to energy in

the cylinders Aε
n), or we have not. In fact, it is enough to consider whether we have lost ω-energy, i.e.,

whether
∫
[0,1]×[0,1] Φ

∗
ω is zero or not.

If theω-energy is also not lost, then γ+ = γ
− and our holomorphic strips [−N ε

n, N
ε
n] × [0, 1] have very

small ω-energy. In the case that γ+ is a trajectory, we may use [HWZ02]. If γ+ is instead a point, the result
follows from [BEH+03, Lemma 5.14]. Roughly speaking, the first result tells us that cylinders—and
hence, by a doubling argument, strips—with small energy look like trivial cylinders (respectively, strips)
over a Reeb trajectory, while the second one says that the diameter of the vεn’s approaches 0.
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If, on the other hand, we have lost energy, then since ∇vεn was assumed to be bounded (thanks to
the gradient bound on g

ε
n), the only possible place for bubbled-off energy is at the node itself. This cre-

ates strip-breaking at boundary punctures, or cylinder-breaking at interior punctures. These strips have
positive energy corresponding to the lost energy, but no marked points since they did not appear in the
Deligne–Mumford limit. But positive energy implies that the projection to Σ is nonconstant, so such a
strip must have passed through one of the points pr chosen in Step 1. This means that there must be a
marked point on a bubbled-off strip, a contradiction, so this case never occurs.

Step 4b. Convergence over punctures. The idea for punctures is very similar to that of nodes. The
only difference is the following: In the case where q was a node, it was adjacent to two components,
and we showed that the components approach the same value at q. In the case where q is a puncture,
it is only adjacent to a single component. Using the notation v

ε
n = un ◦ φn ◦ gεn, but here with g

ε
n the

parameterization of a cuspidal neighborhood of q by [0,∞)× [0, 1], we see that the puncture approaches
one limit

γ1 ≔ lim
n→∞

lim
x→∞

v
ε

n({x} × [0, 1]).

(Note that we only consider the case when q is a boundary puncture, since our definition of a source only
allows for boundary punctures. Unlike nodes, which can form in the limit by degenerating along curves,
the limit surface S∞ can only have the punctures which were already found in S, i.e., in the topological
type of the Sn’s.) There is another way to get the limit of the puncture, however, namely by translating
v
ε
n in the R-direction, and then taking the limit γ2. That is to say, the maps vεn − (t ◦ vεn) (0, 0) are also

asymptotic to some Reeb trajectory. To show that these are the same, we again split into cases depending
on whether any energy is lost.

Step 5. Obtaining the level structure. Since we will almost never need the exact details of the level
structure, we will be brief in this step. Label the components of Thick(S∞) = S∞ \ ⋃

Γj as C1, . . . , CN .
We say that Ci ≤ Cj if, for points xi ∈ Ci and xj ∈ Cj , we have

lim sup
n→∞

[(t ◦ un) (xi) − (t ◦ un) (xj)] < ∞.

If Ci ≤ Cj and Cj ≤ Ci, then we say that Ci ∼ Cj .
This produces an ordering on the components of Thick(S∞). We say that the first level consists of

those components which are minimal with respect to this ordering. The second level consists of the next-
smallest components, and so on. It is possible that a node “jumps levels,” so that C+ (to use the notation
from Step 5a) has levelN butC− has levelN +5, for example. In this case, we add the appropriate number
of vertical cylinders/strips between these components.

We may now remove the extra marked points {qi,r,n} which we added in Step 1. This is fine since these
marked points only lie on components whose projection to Σ is nonconstant, so removing these points
will not create any unstable components. Thus we have a holomorphic building U which is the limit of
the curves ui.

Finally, note that this limit curve U belongs to the homology class B. This is because the marked
points qr,i,n determine the domain of our holomorphic building. Since the un’s all had homology class B,
so too does U . □

Remark 3.20. Recall in Remark 3.3 that we said that we would not need decorations. To prove SFT
compactness in the more general setting, i.e., for holomorphic buildings in a general cylindrical manifold
V × R (see Theorem 3.21), however, we would need decorations. Decorations would be necessary to
ensure that γ± (in the nodal case) and γi (in the puncture case) have the same parameterizations, and
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thus glue together properly. But because there are no periodic Reeb orbits, there is only one preferred
parameterization of our Reeb orbits, namely once along the chord [0, 1].

This theorem not only implies that our moduli spaceMB(x, y; S) can be compactified by considering
holomorphic buildings, but also tells us what the possible degenerations are.

Finally, we note that the proof of Theorem 3.18 may be generalized to the following statement about
cylindrical manifolds V × R.

Theorem 3.21 ([BEH+03, Theorem 10.1],[Abb14, Theorem 3.20]). If W = V × R is a cylindrical

manifold with a totally real submanifold L, then for every E0, the space

MS,μ(V × R, L, J ) ∩ {E(U ) ≤ E}

is compact. The moduli space above is the space of holomorphic buildings in V × R with boundary in L,

domain of topological type S, and exactly μ marked points.

3.5 Restricting degenerations
Ultimately, our goal is to define some kind of Floer homology using the holomorphic curves in the moduli
space MB(x, y; S). As in many Floer contexts, we will show that our moduli space MB(x, y; S) is in fact
a manifold of dimension ind(B, S) − 1, at least in the case that ind(B) ≤ 2.

Our first step will be to limit the possible kinds of degeneration which may occur. It is worth sum-
marizing which degenerations are even allowed. In particular, the proof of the compactness theorem
(Theorem 3.18) implies that we only have the following types of degeneration:

• The source can degenerate into a point on the boundary of the moduli space of Riemann surfaces.
This happens when we pinch the conformal structure of the Si’s along some circles and/or arcs,
which causes nodes to form.

– The map could extend continuously over a node, thus sending it to a point in Σ× [0, 1] ×R.
This results in a nodal surface.

– If the R-coordinate approaches ±∞ near a node, then we obtain a level splitting.

• It is also possible that, instead of the source degenerating, the map degenerates by becoming sin-
gular at some points. (This happens, in particular, if the gradient blows up at a marked point, e.g.,
a puncture.)

– If the derivative blows up at a puncture of S, thus causing another type of level splitting at
±∞. Whether the splitting occurs at ∞ or −∞ depends on whether the puncture is marked
with a + or with a −.

– If the derivative blows up at an interior point, then we bubble off a holomorphic sphere.
– Finally, the derivative blows up at a boundary point, in which case we bubble off a holomor-

phic disk.

We begin by restricting which degenerations are allowed to appear.
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Lemma 3.22. The only codimension-one degenerations which may occur from a sequence of J -holomorphic

maps un ∈ MB(x, y; S) converging to a holomorphic building U = {Uj} are level splittings. In particular,

the limit surface has smooth underlying source.

Proof. First, observe that we cannot bubble of holomorphic spheres and disks. After all, a holomorphic
sphere would correspond to a nontrivial element of π2(Σ × [0, 1] × R) = 0, while a holomorphic disk
would correspond to a nontrivial element ofπ2(Σ×[0, 1]×R, Cα∪Cβ) = 0. (Recall thatCα = ααα×{1}×R,
while Cβ = βββ × {0} × R.)

It therefore suffices to show that the only nodes which may form come from level splittings, i.e., we
can only pinch the conformal structure along arcs with one boundary point on the α-curves and one
on the β-curves. An interior Deligne–Mumford degeneration is obtained by pinching some number of
circles, and results in an interior node. This is a codimension-two degeneration.

Now we show that we cannot form “cusp degenerations,” that is to say, we cannot pinch the confor-
mal structure along arcs whose boundary is on 𝜕S. (These degenerations have codimension one.)

Suppose we have a cusp degeneration. Let S′ be the nodal surface which is obtained from S by collaps-
ing along the arcs where the almost complex structure degenerates. Denote one of the collapsed arcs byA.
Weak boundary monotonicity, i.e., Property (M-6), implies that the components of 𝜕S are all mapped to
a different cylinder in Σ× [0, 1] ×R by each un. Thus the two endpoints ofA lie on the same component
C of 𝜕S. Without loss of generality we may say that un(C) = α1 × {1} × R. Let

⋃
C
′ be the union of

components which are mapped to this cylinder α1 × {1} × R by the limit curve F .
Now consider the restriction of πD ◦ U to

⋃
C
′, where πD is the projection onto [0, 1] × R. By

the open mapping theorem, we know that πD ◦ U is constant near one of the components C′ in
⋃
C
′,

and thus is constant on the component of S′ which contains C′. Thus there is a component of S′ whose
boundary is mapped by U onto the union of the cylinders with s = 1, i.e., onto ααα × {1} × R. From this
and the fact that the α-circles are nonseparating, it follows by index calculations in [Lip06a, Section 4]
that the rest of U is made up of g trivial disks, so that B = [Σ]. But this is impossible because we assume
that B does not cross z.

We conclude that cusp degenerations cannot form either, so the only codimension-one degeneration
left comes from level splitting. This could occur either when the derivative blows up at a puncture, or if
the domain degenerates along an arc which connects a curve in ααα to a curve in βββ. Note that the former
level splitting results in strip breaking; the degenerated strips are unstable and thus are not seen by the
Deligne–Mumford limit. The latter case, which results in level splitting as well, is a Deligne–Mumford
degeneration. Either way, the only possible degenerations are level splittings. This is exactly what we
claimed. □

Proposition 3.23. Fix an admissible almost complex structure which achieves transversality. Let ui be a

sequence of J -holomorphic maps in MB(x, y; S) for some smooth source S which converges to a holomorphic

building U . Suppose ind(B) ≤ 2. Then each story Uj of U satisfies (M-0)–(M-6).

Proof. The previous lemma implies that (M-0) is satisfied. Furthermore, since boundary components
of the sources for the Uj ’s are limits of boundary components of the sources for the un’s, (M-1) is auto-
matically satisfied. If πD ◦ U is constant on some component of S, then bubbling must have occurred.
Theorem 3.18 implies (M-3), which states that energy is bounded, directly. Furthermore, we already ruled
out bubbling, so (M-4) is satisfied.

Showing (M-2) takes the most work. We only sketch it out here, but refer the reader to [Lip06a,
Proposition 7.1]. First, note that

∑
indUj = ind un for all n. This follows by unpacking the formula for
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ind(B, S) given in Proposition 3.13. Index formulas analogous to the definition of ind(B) in the same
proposition imply that, near each immersed curve with k double points, there is a 2k-dimensional family
of embedded curves. Since we assume ind(B) ≤ 2, it follows that the dimension of the resulting moduli
would be too high. (Recall that ind(B) = dimM̃B(x, y; S) = dimMB(x, y; S) + 1.)

To prove (M-5), it suffices to show that boundary components can neither form nor disappear in the
limit curve. But this follows from the open mapping theorem and the maximum modulus principle, as
well as the fact that the projection to [0, 1] × R is holomorphic.

We use the open mapping theorem again to prove (M-6), as well as the implicit fact that there are
exactly 2g punctures in each story of the limit curve. In particular, the open mapping theorem on the
holomorphic maps πD ◦ un implies that the R-coordinate of each un must be monotone on any compo-
nent of 𝜕 ¤S. (This notation is to emphasize that we mean 𝜕S, minus the 2g boundary punctures.) Since
each story Uj of the limit curve U satisfies (M-5), we know that it is a g-fold covering map of [0, 1] × R.
Finally, because Uj is the limit of (translates of) the curves un, it follows that there are exactly g positive
punctures and g negative punctures on Uj . □

To get the desired result that MB(x, y) is a smooth manifold, we still need one more lemma. We
state this roughly, and without some of the technical conditions. The details may be found in [Lip06a,
Appendix A].

Proposition 3.24. Consider a height-two holomorphic building (u1, u2) ∈ MB1 (x,w) × MB2 (w, y).

Consider small neighborhoods U1 of u1 and U2 of u2 inside their respective moduli spaces. Then there is an

open neighborhood of (u1, u2) in MB1∗B2 (x, y) which is homeomorphic to U1 × U2 × [0, 1).

Loosely speaking, this “gluing lemma” gives us a converse to our compactness theorem. In particular,
the compactness theorem says that a sequence of holomorphic curves will converge to a holomorphic
building. The gluing lemma above, on the other hand, says that , with certain conditions, we can reverse
this process: Any holomorphic building may be “surrounded” by an affine neighborhood of holomor-
phic curves. In particular, every holomorphic building can be obtained as the limit of some sequence of
holomorphic curves.

Putting everything together, we conclude the following.

Theorem 3.25. Consider the moduli space MB(x, y) of holomorphic curves satisfying (M-0)–(M-6) for

some smooth source S with χ (S) = χemb(B), where we identify translated curves. If ind(B) ≤ 2 and

B ≠ [Σ], then MB(x, y) is a smooth manifold of dimension ind(B) − 1. Furthermore, it is the interior

of the compact manifold MB(x, y) which comprises all of the holomorphic buildings whose stories satisfy

(M-0)–(M-6).

3.6 The moduli space in the bordered case

To set up the bordered case, with H = (Σ, ααα, βββ, z), let Σ be the interior of Σ. We view it as a Riemann
surface with a puncture p. Alternatively, we may view it as having a cylindrical end 𝜕Σ×R. In particular,
we choose a symplectic structure ωΣ on Σ with respect to which 𝜕Σ is an infinite cylindrical end. Let
jΣ be, as before, an ωΣ-compatible almost complex structure. We ask, furthermore, that the α-arcs are
cylindrical at p in the following sense: For a fixed (punctured) neighborhood U of p and identification
ϕ : U → S

1 × (0,∞) ⊂ T
∗
S

1, we have that both jΣ |U and ϕ(αa
i
∩ U ) are invariant with respect to
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R-translation. Finally, let Σe be the result of filling in the puncture p of Σ. Note that jΣ induces an almost
complex structure on Σe.

Definition 3.26. An admissible almost complex structure J satisfies (J-1)–(J-5), as well as the following
additional requirement:

(J-6) J splits as J = jΣ × jD in a fixed R-invariant neighborhood of the fiber {p} × [0, 1] × R of the
puncture p.

In the closed case, Σ × [0, 1] × R had two ends: one at ∞ and one at −∞. Now, we have a third end,
namely the puncture (equivalently, cylindrical end) of Σ. Thus we must allow a wider range of sources.

Definition 3.27. Adecorated source S▷ consists a smooth (not nodal) Riemann surface S with bound-
ary and with finitely many punctures on the boundary such that each puncture is labeled +, −, or e. Fur-
thermore, each e puncture is also labeled by a Reeb chord in (Z \ z, a), where (Z, a,M) is the pointed
matched circle associated to 𝜕Σ.

We also refer to the e punctures as “east punctures,” since we visualize the cylindrical end of Σ as
stretching out into the east.

For our holomorphic curves u : (S, 𝜕S) → (Σ × [0, 1] × R, Cα ∪ Cβ), we now have the following
conditions. Note that some of them are similar to conditions (M-0)–(M-6) above. However, note that
we drop the condition that umust be an embedded curve. This slightly larger moduli space is more easily
compactified, so using this as our definition will help us in Section 3.8.

(M-1) u is J -holomorphic.

(M-2) u is proper and extends to a proper map ue : Se → Σe × [0, 1] × R.

(M-3) ue has finite energy, again in the symplectic field theory sense.

(M-4) πD ◦ ue is a g-fold branched cover. In particular, πD ◦ u is nonconstant on every component of S▷.

(M-5) For every positive puncture q, we have limz→q(t ◦ u) (z) = ∞. Here t is the coordinate projection
Σ × [0, 1] × R → R. Similarly, for every negative puncture q, we have limz→q(t ◦ u) (z) = −∞.

(M-6) At each east puncture q, limz→q(πΣ ◦ u) (z) is the Reeb chord labeling z.

(M-7) πΣ ◦ u does not cover the region of Σ which is adjacent to z.

(M-8) For every t ∈ R and every curve αc
i
, u−1(αc

i
× {1} × {t}) consists of exactly one point. Similarly,

u
−1(βi × {0} × {t}) consists of exactly one point.

Again, we call the last condition weak boundary monotonicity. Sometimes, we impose the condi-
tion of strong boundary monotonicity.

(M-9) For every t ∈ R and every arc αc
i
, u−1(αa

i
× {1} × {t}) consists of at most one point.
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A holomorphic map satisfying (M-1)–(M-8) converges to a g-tuple of chords x × [0, 1] at −∞, and
similarly at ∞. Here, x = {xi} is a generalized generator; it is like a generator, but more than one xi
may lie on the same α-arc because we do not impose (M-9).

Now for B ∈ π2(x, y) and S▷ a decorated source, we may define M̃B(x, y; S▷) in the same way as
before. Once again, if M̃B(x, y; S▷) is nonempty, then B is positive.

In the bordered case, we cut down our moduli space by imposing certain time requirements on the
east punctures. Let E(S▷) be the set of east punctures of S▷. In particular, for u ∈ M̃B(x, y; S▷) and a
q ∈ E(S▷), define the evaluation map evq(u) = (t ◦ ue(q) from M̃B(x, y; S▷) to R. We may put all the
evaluation maps together to get the map

ev =
∏

q∈E(S▷)
evq : M̃B(x, y; S▷) → RE(S▷)

.

Let P = {Pi} be a partition of E = E(S▷). Define the partial diagonalΔP to be the subspace of RE

such that xp = xq whenever p and q are east punctures in the same part Pi.

Definition 3.28. Let x and y be generalized generations, B ∈ π2(x, y) a homology class, S▷ a decorated
source, and P a partition of E. Then define

M̃B(x, y; S▷;P) ≔ ev−1(ΔP) ⊂ M̃B(x, y; S▷).

Intuitively, a holomorphic curve in M̃B(x, y; S▷) goes off to east ∞ (i.e., toward the puncture/cylin-
drical end) as it approaches any east puncture. However, it may go toward east infinity at different times
for different punctures. The partition P dictates which east punctures must go off to east ∞ at the same
time. Note that the discrete partition, consisting of #E(S▷) many singleton sets, results in no extra time
conditions for the east punctures; thus M̃B(x, y; S▷;P) is just M̃B(x, y; S▷) in this case.

Proposition 3.29. There is a residual set Jreg of almost complex structures for which the moduli spaces

M̃B(x, y; S▷) are transversally cut out by the 𝜕-equations, hence are smooth manifolds. For any countable

set {Mi} of submanifolds ofRE
, there is a residual set of admissible J which, furthermore, satisfy the property

that ev : M̃B(x, y; S▷) → RE
is transverse to each submanifold Mi.

Thus we may always choose J which achieves transversality in this context, that is to say, a J such
that the moduli spacesM̃B(x, y; S▷;P) are transversely cut out for all choices of x, y, B, S▷, andP. From
now on, when we are in the bordered case, we will always assume that J achieves transversality unless
otherwise specified.

We may compute the expected dimension of the smooth manifold M̃B(x, y; S▷;P).

Proposition 3.30. The expected dimension ind(B, S▷, P) of M̃B(x, y; S▷;P) is

ind(B, S▷, P) ≔ g − χ (S) + 2e(D(B)) + |P |,

where e(D(B)) once again denotes the Euler measure of the domain associated to B. Here |P | denotes the

number of parts in the partition P.
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We may now divide M̃B(x, y; S▷;P) up into different strata based on the time order in which each
partition class of east puncture goes off to infinity.

Definition 3.31. Let P⃗ be an ordered partition of the e punctures of S▷, where P is its associated un-
ordered partition. Let M̃B(x, y; S▷; P⃗) be the open subset of M̃B(x, y; S▷;P) comprising those holo-
morphic curves such that the ordering of P induced by t agrees with the ordering in P⃗. In other words,
we say that u ∈ M̃B(x, y; S▷; P⃗) if evq(u) < evq′ (u) for all q ∈ Pi and q′ ∈ Pi′ with i < i

′ in P⃗.

There is an R-action on Σ × [0, 1] × R, namely translation in the R-coordinate. As long as S▷ is
stable, i.e., S▷ is not the trivial collection of g disks with two boundary punctures each and B = 0, this
action is free. In this case, we are most interested in the reduced moduli spaces

MB(x, y; S▷;P) ≔ M̃B(x, y; S▷;P)/R and MB(x, y; S▷; P⃗) ≔ M̃B(x, y; S▷; P⃗)/R.

Outside of the trivial case B = 0, these moduli spaces have dimension ind(B, S▷, P) − 1.
Since the action is translation in the t-coordinate, the evaluation maps evq do not descend to the

quotient. However, the difference evp − evq does, for any two e punctures p and q. Thus we define

evp,q = evp − evq : MB(x, y; S▷; P⃗) → R.

Furthermore, we can combine the evaluation maps into a single map

ev : MB(x, y; S▷; P⃗) → RE/R.

Here R acts by translation on each coordinate of RE .
An unordered partition P of E gives rise to a set [P] of multi-sets of Reeb chords which is defined by

replacing the punctures in P with the associated Reeb chords. Similarly, an ordered partition P⃗ gives rise
to a sequence of multi-sets of Reeb chords, which we denote [P⃗].

Recall that in Proposition 3.13 we were able to give a source-independent formula for the dimension
of the moduli space. Similarly, whenMB(x, y; S▷; P⃗) has an embedded representative, there is a domain-
invariant definition for the index. (We only need this for MB(x, y; S▷; P⃗), and not for MB(x, y; S▷;P),
because that is the moduli space whose elements our bordered Heegaard Floer modules will count.)

We require a few definitions first.
Recall that a curve u satisfying both (M-8) and (M-9) is said to satisfy strong boundary monotonicity,

and thus is asymptotic to a genuine generator. Maps which are only weakly boundary monotonic are
only asymptotic to generalized generators. In fact, the notion of strong boundary monotonicity is purely
combinatorial and only depends on the asymptotics of the curve.

Definition 3.32. Let s be a k-element multi-set of [2k], i.e., a formal linear combination of elements of
[2k] whose coefficients are in N ∪ {0} and sum to k. Let ρ⃗ρρ = (ρρρ1, . . . , ρρρn) be a sequence of nonempty
multi-sets of Reeb chords. Define

o(s, ρ⃗ρρ) ≔
[
s ∪

(⋃
iM (ρρρ+

i
)
) ]

\
(⋃

iM (ρρρ−
i
)
)
,

where the union and difference operations are taken as multi-sets (i.e., by adding or subtracting linear
combinations to get linear combinations with coefficients in Z). Recall that M is the matching of the
pointed matched circleZ = (Z, a,M). Then we say that the pair (s, ρ⃗ρρ) is strongly boundarymonotone
if the following two conditions are satisfied for each i = 0, . . . , n:
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(1) The multi-set o(s, (ρρρ1, . . . , ρρρi)) is a k-element subset of [2k] with no repeated elements (hence is a
genuine set).

(2) The multi-sets M (ρρρ+
i
) and M (ρρρ−

i
) have no elements with multiplicity greater than 1.

As suggested by the notation, this is related to the strong boundary monotonicity of a curve.

Proposition 3.33 ([LOT18, Lemma 5.53]). A curve u ∈ MB(x, y; S▷; P⃗) is strongly boundary monotone

if and only if (x, [P⃗]) is strongly boundary monotone, where [P⃗] is the set of multi-sets of Reeb chords which

is given by replacing each puncture of S
▷

with its associated Reeb chord.

A sequence ρρρ = (ρρρ1, . . . , ρρρn) of multi-sets of Reeb chords is compatible with a homology class B ∈
π2(x, y) if 𝜕𝜕B = [⃗ρρρ] in H1(Z, a), and (x, ρ⃗ρρ) is strongly boundary monotone.

Finally, one may define a so-called Maslov index ι (⃗ρρρ). We do not go into the definition, but note
simply that it is an integer depending only on the sequence ρ⃗ρρ of sets of Reeb chords. See, for example,
[LOT18, Section 3.3] or [Lin12, Section 1.5].

Proposition 3.34 ([LOT18, Proposition 5.69]). Let u ∈ M̃B(x, y; S▷; P⃗). If xi and yi are the compo-

nents in the generators x and y, respectively, then

χ (S) = g −
(

g∑︁
i=1

nxi (B) + nyi (B)
)
+ e(D(B)) − ι (⃗ρρρ)

if and only if u is embedded, i.e., if and only if M̃B(x, y; S▷; P⃗) has an embedded holomorphic representa-

tive. From this and Proposition 3.30, we conclude that the expected dimension of M̃B(x, y; S▷; P⃗) is

ind(B, [P⃗]) ≔
(

g∑︁
i=1

nxi (B) + nyi (B)
)
+ e(D(B)) + |P⃗ | − ι[P⃗]).

Thus we may define a moduli space of embedded curves which connect generators x and y, belong
to the homology class B, and have prescribed asymptotics ρ⃗ρρ as east infinity. In particular, for compatible
pairs (B, ρ⃗ρρ), define

M̃B(x, y; ρ⃗ρρ) ≔
⋃

χ (S▷)=χemb (B,⃗ρρρ)
[P⃗]=⃗ρρρ

M̃B(x, y; S▷; P⃗).

Here χemb(B, ρ⃗ρρ) is exactly the formula for χ (S) in Proposition 3.34.
In general, we will always be discussing moduli spaces where (B, ρ⃗ρρ) are compatible, even when we do

not specify it.

3.7 Holomorphic combs
Recall that the compactification of the moduli space MB(x, y; S) in Section 3.2 requires that we add
holomorphic buildings. This allowed the curves to “break” at t = ±∞. To compactify our moduli spaces
M̃B(x, y; S▷;P) andM̃B(x, y; S▷; P⃗) of holomorphic curves connectingx toy, we must allow the curves
to break as well. This breaking can happen at t = ±∞, or at east ∞, i.e., at the infinite cylindrical end
corresponding to 𝜕Σ.
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3.7.1 Holomorphic curves in R × Z × [0, 1] × R

The breaking at ±∞ is similar to the breaking in Section 3.3 via holomorphic buildings. The breaking at
east ∞, on the other hand, requires that we discuss holomorphic curves in R × Z × [0, 1] ×R, which we
equip with the standard split symplectic form and a fixed split almost complex structure J = jΣ × jD.

Such a curve differs from a holomorphic curve in Σ× [0, 1] ×R because it may potentially have up to
four different types of ends: two at±∞ in the first coordinate, and two more at±∞ in the last coordinate.
The first coordinate is our “east–west” direction; we call −∞ and +∞ in the first coordinate west ∞ and
east ∞, respectively.

We again have projection maps πΣ : R × Z × [0, 1] × R → R × Z and πD : R × Z × [0, 1] × R →
[0, 1] × R.

Definition 3.35. A bidecorated sourceT⋄ is a smooth (not nodal) Riemann surfaceT with boundary
and with finitely many punctures on the boundary. Each puncture is labeled with either e orw, as well as
with a Reeb chord in (Z, a).

Definition 3.36. LetT⋄ be a bidecorated source. Define Ñ (T⋄) to be the moduli space of proper holo-
morphic maps

v : (T, 𝜕T ) → (R × (Z \ z) × [0, 1] × R,R × a × {1} × R)
which extend to east and west∞ as dictated by the labelings of the punctures. That is, if the west puncture
q is labeled by the Reeb chord ρ, then limz→q(πΣ◦u) (z) = {−∞}×ρ, and similarly if q is an east puncture.

Note that the maps in Ñ (T⋄) take all of 𝜕T to s = 1, where s is the [0, 1]-coordinate. As such, by
the open mapping theorem, every component ofT maps to a single point in [0, 1] ×R. After all, proper
maps are closed, so if πD ◦ vwere nonconstant, then it would be surjective. Note that this means that we
do not have punctures at t = ±∞, so the curves in Ñ (T⋄) only have east and west punctures.

We again have an evaluation map evq : Ñ (T⋄) → R for each puncture q of T⋄ given by v ↦→
limz→q(t ◦ v) (z). (This limit is trivial since the t-coordinate is constant on each connected component
of T⋄.) We define west and east evaluation maps

evw ≔
∏

q∈W (T ⋄)
evq : Ñ (T⋄) → RW (T ⋄)

and
eve ≔

∏
q∈E(T ⋄)

evq : Ñ (T⋄) → RE(T ⋄)
.

Here W and E are the sets of west and east punctures, respectively.
As in the context of M̃B(x, y; S▷), we may use these evaluation maps to cut down Ñ , as follows.

Definition 3.37. Let Pw and Pe be partitions of the west and east punctures, respectively. Define

Ñ (T⋄;Pw, Pe) ≔ (evw × eve)−1(ΔPw
× ΔPe

).

When Pw is the discrete (trivial) partition, we denote Ñ (T⋄;Pw, Pe) by Ñ (T⋄;Pe).

In general, the moduli spaces Ñ (T⋄;Pw, Pe) are not transversally cut out, hence not manifolds. There
is a special case, however, when all of the components of T are topological disks.
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Proposition 3.38 ([Lip06b, Lemma 4.1.2]). Suppose T
⋄

is a bidecorated source whose components are all

topological disks. Then, ifR×Z× [0, 1] ×R is equipped with a split almost complex structure, the associated

moduli space Ñ (T⋄) is transversally cut out by the 𝜕-equation.

We will mainly be interested in the reduced moduli space. In particular, there is an (R×R)-action by
translation on the two R-coordinates of R×Z × [0, 1] ×R. This induces an (R×R)-action on Ñ (T⋄).
This action is usually free. In particular, we call a holomorphic map v stable if

• at least one component of its source T⋄ is not a twice-punctured disk; and

• if πΣ ◦ v is constant on some component C of T⋄, then C has no nontrivial automorphisms.

If every v ∈ Ñ (T⋄) is stable, then the (R×R)-action on Ñ (T⋄) is free. Thus we can make the following
definition in this case.

Definition 3.39. If T⋄ is a bidecorated source and Ñ (T⋄) is stable, then

N (T⋄) ≔ Ñ (T⋄)/(R × R).

3.7.2 Some examples
We will now give some names to a few particularly useful holomorphic curves in R × Z × [0, 1] × R.

Definition 3.40. A trivial component is a twice-punctured topological disk where one puncture is
labeled e, one is labeled w, and both are labeled by the same Reeb chord.

Holomorphic maps on trivial components are not particularly interesting, as they are preserved under
translation of the first R-coordinate.

(w, ρ) (e, ρ) . . . . . .

Figure 3.12: A trivial component. Note that the image is the projection to Σ ∪ (R×Z), which is
topologically equivalent toΣ. The thickened black chord is the Reeb chord ρwhich is determined
by the labelings of the punctures. (In later figures, we will only draw the cylinder.)

Definition 3.41. A join component is a topological disk with two west punctures and one east punc-
ture. Similarly, a split component is a topological disk with two east punctures and one west puncture.
A stable curve which is entirely made up on join (respectively, split) components is called a join (respec-
tively, split) curve.

Examples are shown in Figures 3.13 and 3.14. Using the same notation, there exists a holomorphic
map v in the moduli space for a join component if and only if ρe = ρ1 ⊎ ρ2. Similarly, there exists a
holomorphic map v whose source is a split component if and only if ρw = ρ1 ⊎ ρ2. Such maps v are
unique up to translation in the t-coordinate.
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(w2, ρ2)

(w1, ρ1)

(e, ρe = ρ1 ⊎ ρ2)

Figure 3.13: A join component. Note that ρe = ρ1 ⊎ ρ2 because the boundary of the component
must be mapped to the discrete set a = ααα ∩ βββ.

(e2, ρ2)

(e1, ρ1)

(w, ρw = ρ1 ⊎ ρ2)

Figure 3.14: A split component. Similarly, we require ρw = ρ1 ⊎ ρ2.

Definition 3.42. A shuffle component is a topological disk with four punctures, two east and two
west, which are ordered east, west, east, west around the boundary. If the two Reeb chords associated to
the west punctures are interleaved and the Reeb chords associated to the east punctures are nested, then
we call it an odd shuffle component. On the flip side, if the two Reeb chords associated to the west
punctures are nested and the Reeb chords associated to the east punctures are interleaved, then we call it
an even shuffle component.

(e, ρ1)

(w, ρ2)

(e, ρ4)

(e, ρ3)

=

Figure 3.15: An (odd) shuffle component. Its mirror image would be an even shuffle component.
The green dot denotes a branch point.

With the notation in Figure 3.15, there exists a holomorphic map whose source is a shuffle component
if and only if ρ+1 = ρ

+
2 , ρ−2 = ρ

−
3 , ρ+3 = ρ

+
4 , and ρ−4 = ρ

−
1 . Thus if the associated moduli space is nonempty,

then the shuffle component is either odd or even.

Definition 3.43. A holomorphic curve composed of exactly one shuffle component and some number
of trivial components is called a shuffle curve. The shuffle curve may be odd or even, depending on the
parity of the shuffle component.
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3.7.3 Holomorphic combs

Returning now to our original goal of defining a way for our holomorphic curves in M̃B(x, y; S▷;P)
and M̃B(x, y; S▷; P⃗) to break at east ∞, we will define a generalization of holomorphic buildings known
as holomorphic combs. As in the case of holomorphic buildings, we allow holomorphic combs with nodal
sources. Roughly speaking, the difference between holomorphic combs and holomorphic buildings is
that combs allow for a degeneration at east∞ by breaking off holomorphic curves inR×Z× [0, 1] ×R—
hence our discussion of Ñ (T⋄) earlier. (In fact, holomorphic buildings may be even further generalized.
Exploded manifolds, for example, give a way for such degeneration to occur in directions like “northeast
infinity.” [Par12])

Definition 3.44. A holomorphic story is a sequence (u, v1, . . . , vk) of horizontal levels, where k ≥ 0,
such that

• u ∈ MB(x, y; S▷) for some B and S▷;

• vi ∈ Ñ (T⋄
i
) for some T⋄

i
;

• there is a one-to-one correspondence between E(S▷) and W (T⋄
1 ), as well as between E(T⋄

i
) and

W (T⋄
i+1) for i = 1, . . . , k − 1, which preserves the labelings by Reeb chords; and

• ev(u) = evw(v) and eve(vi) = evw(vi+1) for i = 1, . . . , k − 1.

Intuitively, then, a holomorphic story allows our holomorphic curves to break off at east ∞. The
requirements that ev(u) = evw(v1) in RE(S▷)/R � RW (T ⋄)/R and eve(vi) = evw(vi+1) in RE(T ⋄

i
)/R �

RW (T ⋄
i+1)/R are so that the breaking-off at each east–west puncture pair happens at a well-defined time.

Finally, like with holomorphic buildings, we must allow degeneration at ±∞.

Definition 3.45. A holomorphic comb of height N is a sequence (uj , vj,1, . . . , vj,kj ) for j = 1, . . . , N of
holomorphic stories. In general, we use the notation that uj is a stable curve in MBj (xj , xj+1; S▷

j
), where

x1, . . . , xN+1 are generalized generators. The index j is the vertical level.

The trivial holomorphic comb has N = 0 and corresponds to a trivial (unstable) holomorphic
curve. We call a holomorphic comb simple if it has one level, and if that single holomorphic story is
(u, v), i.e., has k = 1. We call a holomorphic comb toothless if it has no components at east ∞. (Note
that a toothless comb is basically a holomorphic building.) Finally, the spine of a holomorphic comb is
the part of it which is toothless, i.e., the sub-comb of components which map to Σ × [0, 1] × R.

A height-N holomorphic comb U naturally represents a homology class B ∈ π2(x1, xN+1). In par-
ticular, if Bj is the domain of uj , then B = B1 ∗ · · · ∗ BN . Furthermore, at (far) east ∞, we see that U has
the asymptotics of the east punctures of the vj,kj .

A schematic representation of a holomorphic comb may be seen in Figure 3.16. Note that each com-
ponent at east infinity occurs at a fixed point (s, t) ∈ R within its level in the holomorphic building.
Furthermore, components at east infinity must be topological disks.

Now we define what it means for a sequence of holomorphic combs to converge to another holomor-
phic comb. This will define a topology on the moduli space of holomorphic combs, and hence allow us
to compactify M̃B(x, y; S▷).

For simplicity of notation, we will define convergence of a sequence of holomorphic curve to a holo-
morphic comb. The general definition is not much different.
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Figure 3.16: A schematic diagram of a two-story holomorphic comb whose first story contains
components (u1, v1,1, v1,2) and whose second story is (u2, v2,1) [LOT18]. Note that the compo-
nents at east infinity all occur at a single time t (and, indeed, at a single point s ∈ [0, 1] as well).

Definition 3.46. A sequence {un} of holomorphic curves in Σ× [0, 1] ×R converges to a holomorphic
comb U if the following conditions hold.

• Let SΣ be the result of collapsing the componentsC of the preglued domain ofU for which (πΣ ◦
U ) |C is an unstable map. Then {πΣ ◦ un} converges to {πΣ ◦ U |SΣ} as a holomorphic building.

• Similarly, if SD is the result of collapsing the componentsC for which (πD ◦U ) |C is unstable, then
{πD ◦ un} converges to πD ◦ U |SD as a holomorphic building.

• Let τt be the translation of Σ × [0, 1] × R by t units in the R direction. Let q be a smooth point
in the spine of U . There is a neighborhood V of q, as well as a sequence of points qn in the source
of un with neighborhoods Vn diffeomorphic to V , such that there are numbers tn ∈ R so that
τtn ◦ u|Vn

converges to U |V in the C∞
loc topology.

• For sufficiently large n, the maps un represent the same homology class B which is represented by
the holomorphic comb U .

Recall the idea of preglued surfaces, which allow us to consider the domain of a holomorphic building
as a single Riemann surface. We may do the same thing for both nodal or smooth holomorphic combs
now. This allows us to define the following moduli spaces.

Definition 3.47. The moduli space of all (possibly nodal) holomorphic combs in the homology class B,

whose preglued surfaces are S▷, and with asymptotics x at −∞ and y at ∞ is denoted MB(x, y; S▷). The
closure of MB(x, y; S▷) within this space is denoted MB(x, y; S▷).
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To define the compactified moduli space when we partition our punctures, note that for any punc-
tures p, q ∈ E(S▷), we may extend evp,q to

evp,q : MB(x, y; S▷) → [−∞,∞].
Then we can make the following definitions.

Definition 3.48. The moduli space of all holomorphic combs in MB(x, y; S▷) which respect the par-
tition P is given by

MB(x, y; S▷;P) ≔
⋂
Pi∈P
p,q∈Pi

ev−1
p,q(0).

The closure of MB(x, y; S▷;P) within this space is denoted MB(x, y; S▷;P). Similarly, the closure of
MB(x, y; S▷; P⃗) within MB(x, y; S▷;P) is denoted MB(x, y; S▷; P⃗).

Difficulties with transversality at east ∞ make it so that we must define our moduli spaces as closures
within the space of all holomorphic combs, rather than simply as the space of all holomorphic combs (cf.

Definition 3.16. An example of when MB(x, y; S▷;P) is a proper subset of MB(x, y; S▷;P) is given in
[LOT18, Example 5.23].

3.8 Compactification via holomorphic combs
Much as in the case of holomorphic buildings, we now have a compactness result with holomorphic
combs. In particular, we have the following theorem.

Theorem 3.49. The spaces MB(x, y; S▷) are compact. If {Un} is a sequence of holomorphic combs in a

fixed homology class B and fixed (topological) preglued source S
▷

, then there is a subsequence converging to a

(possibly nodal) holomorphic comb U ∈ MB(x, y; S▷). Similarly, the moduli spaces MB(x, y; S▷;P) and

MB(x, y; S▷; P⃗) are compact.

We will only prove the first statement, namely that MB(x, y; S▷) is compact. It is sufficient, as in
Section 3.4, to prove the following.

Theorem 3.50. Any sequence {un : Sn → Σ × [0, 1] × R} of holomorphic curves in MB(x, y; S▷) has a

subsequence which converges to a holomorphic comb U ∈ MB(x, y; S▷).

To prove it, we need another version of SFT compactness for maps in manifolds with cylindrical ends.
In particular, recall that Theorem 3.18 was only for cylindrical manifolds of the formV×R. BecauseΣ has
a cylindrical end at the puncture p, however, we will need this more general version of SFT compactness.

Theorem 3.51 ([LOT18, Theorem 5.29]). If (W, j) is a punctured Riemann surface with a Lagrangian

submanifold L which is cylindrical near the punctures of W and which is embedded away from finitely

many transverse self-intersections, then the space

MS,μ(W,L, J ) ∩ {E(F ) ≤ E}

is compact. The notationMS,μ(W,L, J ) refers to holomorphic buildings inW with boundary inL, domain

of topological type S, and exactly μ marked points.
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Proof of Theorem 3.50. We will define the limit holomorphic comb U by defining πD ◦ U and πΣ ◦ U
separately. The former defines the “vertical” level structure (i.e., the part of the holomorphic comb which
is a building in [0, 1]×R) while the latter defines the “horizontal” level structure (i.e., the part of the comb
which is a building in Σ, thought of as a manifold with a cylindrical end at east infinity).

Step 1. Obtaining the vertical level structure. Pick generic points pr in each region r of Σ which are
regular values of πΣ ◦ un for all n. Let {qr,i,n} = (πΣ ◦ un)−1(pr) be the preimages of pr . Note that qr,i,n is
a point in the source Sn of un. Think of these points as marked points in Sn. These implicitly keep track
of the homology class B which is represented by each holomorphic curve un, since the number of points
qr,i,n for each region r tells us how many times un crosses the r.

We may use Theorem 3.21 to extract a convergent subsequence of {un}, where we have added the
pointsqr,i,n to the marked point sets ofSn. SFT compactness applies because the mapsun are holomorphic
maps with bounded energy: The ω-energy∫

Sn∪𝜕 (−Sn)
u
∗
nω[0,1]

vanishes since there is no nontrivial 2-form on [0, 1]. The λ energy is the degree of the map, which in this
case is g = g(Σ). (See Remark 3.9.)

Relabel so that {vn} refers to the convergent subsequence. Then {πD ◦ un} also converges, and thus
has a limit {πD ◦ un} → πD ◦U . (Note that we simply use πD ◦U to denote this limit. In particular, we
have not yet defined U itself.) This limit is a (vertical) holomorphic building in [0, 1] × R. Note that we
have used (J-2) to ensure that πD ◦ un is holomorphic. Say it has source S∞.

This gives a vertical level structure on the limit. It remains to find a horizontal level structure, i.e., to
understand the components at east ∞.

Let Vp ⊂ Σ be a closed disk neighborhood of p, i.e., of east ∞. (Recall that we think of Σ as the
interior of Σ, i.e., as a Riemann surface with a cylindrical end at the east puncture p.) For small Vp, we
know by (J-6) that the almost complex structure J splits:

J |Vp×[0,1]×R = jΣ × jD.

LetWp be the complement of a closed disk around pwhich is slightly smaller thanVp, so thatΣ is a union
of the interiors of Vp and Wp. We will find convergent subsequences over Vp and Wp, and then show
that they agree on the overlap.

Step 2. Convergence over Vp. First, we tackle convergence near east infinity. Define Tn ≔ (πΣ ◦
un)−1(Vp), so that our maps restrict to holomorphic maps

(πΣ ◦ un) |Tn : (Tn, 𝜕Tn) → (Vp, 𝜕Vp ∪ ααα).

(The ααα is there because α-arcs go through p, and so πΣ ◦ un might map a point in 𝜕Tn to these arcs. Since
there are no β-curves near p, we need not include βββ.) These maps have a finite energy bound, i.e., “area”
bound, since they are restrictions of maps which all represent the same fixed homology class B ∈ H2(Σ).
Thus Theorem 3.51 applies.

Letting {un} be this convergent subsequence, we have a holomorphic building (πΣ ◦ U ) |T defined
as the limit of (πΣ ◦ un) |Tn . Note that this holomorphic building is “horizontal.” In particular, whereas
πD ◦ U had stories at ±∞, this building (πΣ ◦ U ) |T has stories at east ∞. It is a building in R × Z.
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This might introduce more components to the (presumptive) source of U , namely components
which are not seen by πD ◦ U . Let S∞ thus denote this new source. Define T ′ to be the parts of this
new S∞ which are mapped away from east ∞, i.e.,

T
′ ≔ S∞ \ [(πΣ ◦ U ) |T ]−1 (W c

p).

Step 3. Convergence overWp. Now we show that, overWp, we converge to a holomorphic curve over
T
′. This will define πΣ ◦ U on T ′. (Note that πD ◦ U |T ′ was already defined in Step 1.)

First, we do this for smooth points. In particular, consider some smooth point q ∈ T
′, and letX be a

neighborhood of qwhich is contained inT ′ and which does not touch any nodes or punctures in S∞. We
would like to defineπΣ◦U onX by finding a subsequence {πΣ◦un,X } which converges to a holomorphic
curve (πΣ ◦ U ) |X : X → Wp. Hence {un,X } would converge to U |X : X → Wp × [0, 1] × R.

If we can do this, then we may choose a countable collection {Xn} of X which covers the smooth
part of T ′ and take the diagonal subsequence {un,Xn}. In particular, the resulting subsequence, which
we may denote as {un}, converges in C∞

loc to U away from the collapsed curves in the source. (Recall that
Sn → S∞ in the Deligne–Mumford sense. These collapsed curves are where the complex structures form
infinitely long necks, thus producing nodes in S∞.)

Notice that
π2(Σ × [0, 1] × R) = π2(Σ × [0, 1] × R, Cα ∪ Cβ) = 0,

so no spheres may bubble off. In particular, since bubbling occurs when the gradient approaches infinity
at a point, it follows that ∥dun∥ is bounded on X . Since we once again have an energy bound, we may
apply [MS12, Theorem 4.1.1], for example, to obtain a subsequence of the un which converges to a holo-
morphic curve (πΣ ◦U ) |X over X . Note that this limit may escape toward ±∞, as detailed in Step 1, but
has neither bubbling phenomena nor any escape toward east infinity.

This defines the holomorphic comb on T ′ away from any nodes and punctures. The cases of nodes
and punctures may largely be solved by using existing compactness and convergence theorems. For nodes,
we use the energy bound on the πΣ ◦un’s again, this time apply the removable singularities theorem (e.g.,
[MS12, Theorem 4.1.2]). This means that we may extend U across the nodes. To see that it approaches
the same value from both sides of the nodes involves an argument similar to the argument in the proof
of convergence in the thin part in Theorem 3.18. One may also refer to [MS12, Section 4.7] for a similar
argument in a slightly different setting.

For punctures ofU |T ′ , we would like to show that the map πΣ◦U approaches points inααα∩βββ. (Recall
that generators x ∈ 𝔖(H) are g-element subsets of ααα ∩ βββ.) But this follows from [Flo88d, Theorem 2].

Step 4. Piecing together T and T
′
. We have, at this point, defined πΣ ◦ U on both T and T ′. On

their intersectionT ∩T ′, we have defined the holomorphic combU twice. These coincide becauseC∞
loc is

Hausdorff, and thus the sequence {un |T∩T ′} may only have one limit. Thus we may glue U |T and U |T ′

to get a holomorphic comb U in Σ × [0, 1] × R which is defined on all of S∞.
We claimed that this mapU should still belong to the homology classB. This follows from the marked

points qr,i,n which we added and which determine the domain of our holomorphic comb.
Step 5. Defining πD ◦ U on components at east infinity. We have defined πΣ on Up ∪ Vp, hence

on S∞. But because we added some components to S∞ at Step 2, we have not yet defined πD ◦ U on
the components which only appear at east infinity. In other words, we have not defined πD ◦ U on the
components of S∞ which map to R × Z × [0, 1] × R instead of to Σ × [0, 1] × R.

We will show that πD ◦ U is constant on each such component. Thus each escape to east infinity
happens at a fixed point (s, t) ∈ [0, 1] × R.
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Let C be a fixed component of S∞ which is mapped to east ∞. If (πD ◦ U ) |C is stable, then this
component was already defined before, namely when we were defining the vertical level structure of the
limit. We have thus already defined a map C → [0, 1] × R. The surface S∞ was created by collapsing
some arcs in S, the topological type of the decorated sources of the curves un, so let C0 be the preimage
of C ⊂ S∞ in S. Since C is mapped to east ∞, it follows that 𝜕C0 consists of collapsing arcs and arcs in S
which map to the α-arcs under πΣ ◦un. Thus the limit πD ◦U takes 𝜕C to {1} ×R, so the open mapping
principle tells us that (πD ◦ U ) |C is constant.

Otherwise, the map (πD ◦ U ) |C is unstable and thus has not yet appeared in the limit. The only
unstable components at east infinity are constant in D, so it suffices to figure out which constant this
should be. To do so, we simply add marked points so that C appears in the limit. This tells us which
constant (πD ◦ U ) |C should be.

This defines U completely. □

3.9 Codimension-one degenerations

The compactness theorem in the previous section ensures thatMB(x, y; S▷;P) contains only a few kinds
of degenerations. We are allowed to have all the degenerations which were permitted in the closed case (see
Section 3.5). The bordered case, however, gives rise to one other degeneration, occurring at east infinity.
In particular, if the source degenerates to a nodal source (i.e., to a point on the boundary of the Deligne–
Mumford moduli space of Riemann surfaces), then the holomorphic map may converge to the puncture
p in Σ on one side of the node. This corresponds to a level splitting. However, instead of this splitting
occurring at ±∞, as in the case where the R-coordinate of the map converges to ±∞, this splitting occurs
at east infinity instead.

To summarize, then, we have the following types of degeneration: (1) becoming nodal; (2) level split-
ting at either ±∞ or e∞; (3) level splitting with an unstable source when the derivative blows up at a
puncture; and (4) bubbling of a holomorphic sphere or disk.

Note that Case (4) does not occur. The proof is similar to the argument that bubbling cannot occur
in Lemma 3.22. In particular, neither Σ× [0, 1] ×R norR×Z× [0, 1] ×R have holomorphic spheres, as
theirπ2’s both vanish. Similarly, sinceπ2(Σ, ααα) andπ2(Σ, βββ) both vanish, so too do the relative homotopy
groups with respect to the Lagrangians Cα ∪ Cβ. Thus there are no bubbled-off disks.

Proposition 3.52. Define the boundary of M̃B(x, y; S▷; P⃗) to be

𝜕MB(x, y; S▷; P⃗) ≔ MB(x, y; S▷; P⃗) \MB(x, y; S▷; P⃗).

If (x, ρ⃗ρρ) is strongly boundary monotone and ind(B, ρ⃗ρρ) ≤ 2, then for generic J , every holomorphic comb in

this boundary may be written in one of the following forms:

(1) a toothless height-2 holomorphic comb (u1, u2);

(2) a simple holomorphic comb (u, v) where v is a join curve;

(3) a simple holomorphic comb (u, v) where v is a shuffle curve; or

(4) a height-1 holomorphic comb (u, v1, . . . , vk) such that each vi is a split curve and the preglued surface

of the vi’s is also a split curve.
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Degenerations of the first form are called two-story ends. Formally, they are elements of

MB1 (x,w; S▷1 ; P⃗1) ×MB2 (w, y; S▷2 ; P⃗2),

where B1 ∗ B2 = B and S▷ = S
▷
1 ♮S

▷
2 is a splitting of S▷ which divides the ordered partition P⃗ into two

parts P⃗1 < P⃗2. (Thus all of the degeneration to east infinity which occurs at the first level also occurs
earlier, i.e., at a smaller time t, than the degeneration to east infinity which occurs at the second level.)

Those of the second form are join curve ends. Such ends are elements of MB(x, y; S▷′; P⃗′), where
S
▷′ and P⃗′ are obtained as follows: First, pick some east puncture q from the i-th part of P⃗ which is labeled

by the Reeb chord ρq. (Here i is some fixed number.) Decompose this chord as ρq = ρa ⊎ ρb. Then let
(S▷)′ be a decorated source with east punctures a and b, labeled by ρa and ρb, respectively, such that we
may recover S▷ by pregluing a join component to the punctures a and b. (Thus the join component has
west punctures labeled by ρa and ρb, and an east puncture labeled by ρq.) The partition P⃗′ is obtained by
replacing q with {a, b} in the i-th part of P⃗. In this case, we say that the join curve end occurs at level i.

We call degenerations which take the third form shuffle curve ends. Similarly to the join curve ends,
these are elements of MB(x, y; S▷′; P⃗′) where S▷ may be recovered by pregluing a shuffle curve to S▷′

and P⃗
′ is obtained by replacing two punctures from its i-th part with a different two punctures which

belong to S▷′. We say that the shuffle curve occurs at level i. We may distinguish between odd and even
shuffle curve ends, depending on whether the degenerated shuffle curve is odd or even.

Finally, the degenerations which are formed by degenerating split curves are a special case of colli-
sions of levels. A collision of levels i and i+1 is an element ofMB(x, y; S▷′; P⃗′) where P⃗′ = (P1, . . . , Pi⊎
Pi+1, . . . , Pn). The decorated source S▷′ is obtained as follows: Contract arcs on 𝜕S▷ which connect
punctures in Pi and Pi+1 which are labeled by abutting Reeb chords. Replace these pairs of Reeb chords
by their join, and let Pi ⊎Pi+1 comprise these joins. In general, we may have collisions of levels i, . . . , i + j.
These correspond to degenerating several split curves.

We do not prove Proposition 3.52, and instead refer the reader to Proposition 5.43 and Section 5.6.3
of [LOT18]. The former restricts our degenerations to the four types highlighted above, as well as some
potential nodal degenerations. The latter proves that in the strongly boundary monotone case, there are
no nodal degenerations at all.

Unfortunately, we do not have the necessary transversality or gluing results to conclude that the mod-
uli space MB(x, y; S▷; P⃗) is a genuine manifold. This is owing to difficulties when we degenerate shuffle
curves or split curves. There is a one-dimensional moduli space of shuffle curves based on where the
branch point occurs, as in Figure 3.17, so shuffle curve ends are not isolated. If MB(x, y; S▷; P⃗) were a
manifold with ind(B, ρ⃗ρρ) = 2, then its ends, which would be ends of a 1-dimensional manifold, would be
isolated.

Though we do not have the result that MB(x, y; S▷; P⃗) is a compact 1-dimensional manifold, we do
have the following result, which is sufficient for defining our bordered invariants.

Theorem 3.53. When ind(B, ρ⃗ρρ) = 2, the total number of two-story ends, join curve ends, shuffle curve

ends, and collisions of levels is even. (In fact, there are an even number of even shuffle curve ends, so the

total number of two-story ends, join curve ends, odd shuffle curve ends, and collisions of levels is zero.) In

particular, the boundary 𝜕MB(x, y; S▷; P⃗) has an even number of points.

Finally, it is useful to highlight the index-one case as well. The proof is very similar to the closed case.
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Figure 3.17: The dots in the diagram above depict branch points. By moving the branch points,
we obtain a one-dimensional moduli space of shuffle curves. When the branch point is on the
boundary, there is a branch cut (the green segment) between the two branch points. We can also
approach the other red boundary component.

Proposition 3.54. With a generic choice of almost complex structure, the moduli space MB(x, y; P⃗) is a

compact 0-dimensional manifold if ind(B, ρ⃗ρρ) = 1.

3.9.1 Examples of degenerations

Example 3.55. Consider Figure 3.18 below. Here, the black arc is part of the boundary 𝜕Σ, the red lines

3

2

1a

b

c

Figure 3.18: A small neighborhood of a Heegaard diagram, where red lines denote α-arcs and blue
lines denote β-curves, as usual. (Note that, in principle, some of these α-arcs could be the same.)

are parts of α-arcs, and the blue line is part of some β-circle. We draw our basepoint z somewhere on the
part of 𝜕Σ which is not depicted, i.e., between c and a.

There is a 1-parameter family connecting the generator {a} to the generator {c} with asymptotics at
east infinity given by

(
{ρ12}, {ρ23}

)
. This family may be seen in Figure 3.19. Thus east punctures must

3

2

1a

b

c 3

2

1a

b

c

2

3a

b

c

Figure 3.19: A 1-parameter family in MB
(
{a}, {c}; {ρ12}, {ρ23}

)
. Here B is the shaded region,

i.e., the sum of the rectangles B1 = 12ba and B2 = 23cb. We have drawn the projection πΣ ◦ u,
where green dots and lines denote branch points and cuts.
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approach ρ12 before ρ23.
This moduli space has index two, and is parameterized by the branch point. As such, one end occurs

when the branch point approaches b. This corresponds to a curve which maps to the two rectangles B1
and B2 at increasingly distant times. In other words, we have a holomorphic building at this end, as on
the left side of Figure 3.19. This is an element of

MB1 ({a}, {b}; (ρ12)) ×MB2 ({b}, {c}; (ρ23)),

and is thus a two-story end.
On the other hand, if the branch point approaches the point labeled 2 on 𝜕Σ, then we obtain another

end. This end corresponds to degenerating a split curve whose west puncture is associated to the Reeb
chord ρ13. In particular, we see the split curve in Figure 3.20. In our previous language, this is a collision

a

b

c 3

2

1

Figure 3.20: Letting the branch point escape to east infinity degenerates a split component.

of levels 1 and 2, and is thus an element of MB({a}, {c}; (ρ13)).
Thus we have exactly two ends in this case, which makes sense in light of Theorem 3.53.

Example 3.56. Now consider Figure 3.21. This has four generators, namely {a, c}, {a, d}, {b, c}, and

1

2

3

4

a

b

c

d

Figure 3.21: In this local picture of a Heegaard diagram, let B1 be the lower rectangle 12ba and B2
the upper rectangle 34dc.

{b, d}. There is a moduli space of curves from x = {a, c} to y = {b, d} with asymptotics at east infinity
given by the sequence ({ρ12}, {ρ34}). This moduli space is index 2 and is parameterized by ev34 − ev12,
i.e., by the difference in evaluations between the two east punctures.

From this description, we see that this moduli space has two ends. One is a two-story end, which
occurs when we encounter the Reeb chord ρ34 infinitely far away from the Reeb chord ρ12. It belongs

61



to the product MB1 (x, {b, c}; {ρ12}) × MB2 ({b, c}, y; {ρ34}). The other is a collision of levels, which
occurs when ev34 = ev12. This is an example of a collision of levels which does not degenerate a split
curve. Instead, this end is a genuine holomorphic curve, but simply belongs to another moduli space,
namely MB1∗B2 (x, y; {ρ12, ρ34}) instead of MB1∗B2 (x, y; {ρ12}, {ρ34}).

Example 3.57. The generators of Figure 3.22 are {a, d}, {a, e}, {b, c}, and {b, e}. Consider the moduli

3

2

1a

b

c

d

e

Figure 3.22: A third local picture.

space connecting generators {a, d} and {b, e} with the Reeb chord ρ13. This is an index-two moduli

3

2

1a

b

c

d

e 3

2

1a

b

c

d

e
3

2

1a

b

c

d

e

Figure 3.23: A 1-parameter family of holomorphic maps in the moduli space. The green point is
the branch point, while the green line denotes a branch cut.
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2

1a

b

c

d

e

Figure 3.24: Degeneration occurs when the branch point approaches either 2 or c. When the
branch point approaches 2, we degenerate off a join curve.

space. There is a 1-parameter family of holomorphic maps, as shown in Figure 3.23, which belong to
this moduli space. As the branch point approaches c, however, we degenerate a two-story holomorphic
building with one level going from {a, d} to {b, c} with no east punctures, and one level going from {b, c}
to {b, e} with east puncture labeled by the Reeb chord ρ13. As the branch point approaches the point 2
on 𝜕Σ, the curve degenerates a join curve with west punctures labeled by ρ12 and ρ23 and east puncture
labeled by ρ13. See Figure 3.24.
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1
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a

b
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d

e

f

g

D2

D1 D3

D4

D5

Figure 3.25: A more complicated example which shows how a shuffle curve may degenerate. Note
that D4 is shaded more darkly, to denote that B has two copies of D4.

Example 3.58. We now give an example in which a shuffle curve may degenerate. In Figure 3.25, we show
the projection πΣ ◦ u of some u ∈ MB({a, e}, {c, g}; {ρ23, ρ14}), where B = D1 +D2 +D3 + 2D4 +D5.
Note that the partition dictates that we approach ρ23 and ρ14 at the same time.

In Figure 3.26, we show one possible degeneration, which occurs when the interior branch point
approaches the boundary. In particular, on the left, we have a “typical” element of the moduli space.
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b
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d

e
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c

d

e

f

g

Figure 3.26: Elements of the moduli space MB({a, e}, {c, g}; {ρ23, ρ14}), where B is as indicated
by the shading.

As the branch point nears the segment between e and 2, it forms a branch cut with two boundary
branch points (cf. Figure 3.17). We may move these branch points, and the corresponding branch cuts,
such that they pass through the concave corner between b, e, and d, as in Figure 3.27.

This results in a degeneration into a two-story holomorphic building. In particular, we have one story
belonging to MB1 ({a, e}, {b, d}; ∅), where B1 = D1 and we have no east punctures. The second story
belongs to MB2 ({b, d}, {c, g}; {ρ14, ρ23}), where B2 = D2 +D3 + 2D4 +D5.

There is another type of degeneration, which occurs when an interior branch point (or two bound-
ary branch points) approach 𝜕Σ. This degenerates an odd shuffle curve, as shown in Figure 3.28. In
particular, this is an element of MB({a, e}, {c, g}; {ρ13, ρ24}).
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Figure 3.27: A schematic depicting how the branch cut may be made to look like the right side of
Figure 3.25. We have drawn slits of nonzero width, as opposed to simply indicating cuts.

Figure 3.28: A shuffle curve degenerates in the cylinder R × Z × [0, 1] × R.
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Chapter 4

Bordered Heegaard Floer homology

Like an old stone wall that’ll never fall
Some things are always true
Some things never change

“Some Things Never Change” from Frozen 2

With all the geometric details about moduli spaces out of the way, we can now—finally!—define
bordered Heegaard Floer homology. There are two modules associated to the bordered Heegaard Floer
package, namely the “type A module” ĈFA(Y ) and the “type D module” ĈFD(Y ). The former is an
object known as an “A∞ module,” while the latter has an associated “type D structure.” Both bordered
Heegaard Floer modules are defined, in some sense, by counting curves in the moduli spacesMB(x, y; P⃗)
defined in the previous chapter (cf. Section 2.5, which informally discusses this idea in the closed case).
Exactly which curves they count, however, differs, and corresponds to their differing algebraic properties.

This chapter will be mostly concerned with defining the relevant algebraic notions, and showing
how they correspond to the geometric objects (i.e., the moduli spaces) we have seen before. We begin in
Section 4.1 with a somewhat preparatory section in which we discussA∞ structures. These structures will
form the algebraic framework for our type A module, which is an A∞ module over a certain differential
algebra. In Section 4.2, we define this differential algebra. This algebra, denoted A(Z), is associated to
the pointed matched circle Z = 𝜕H associated to a bordered Heegaard diagram. With these ideas in
place, we turn in Section 4.3 to the definition of the type A module ĈFA(H) associated to a bordered
Heegaard diagram. It turns out that this module is a 3-manifold invariant.

In Section 4.4, we define type D structures. These are a somewhat more novel algebraic notion
than A∞ structures, and were in fact defined expressly for bordered Heegaard Floer theory. We define
ĈFD(H), which is also an invariant of the bordered manifold represented byH, in Section 4.5. The type
D module will be a left A(Z) module, equipped with a type D structure. We conclude in Section 4.6
with a discussion of the pairing theorem. This combines Heegaard Floer homology with both bordered
Heegaard Floer objects. In particular, it says that a suitable pairing of ĈFA(Y1) with ĈFD(Y2), where
𝜕Y1 = 𝜕Y2, recovers the Heegaard Floer homology ĤF (Y ) of their union Y1 ∪𝜕 Y2.
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4.1 A∞ algebras and modules

The bordered invariant ĈFA(Y ) = ĈFA(H) is an A∞ module over a differential graded (dg) algebra
A(Z) associated to the pointed matched circleZ = 𝜕H. As such, before defining ĈFA, we will introduce
in this section some details about A∞ structures, which were first introduced in 1963 by John Stasheff
[Sta63a, Sta63b]. Since then, A∞ algebras, categories, and tensor products have all become part of the
typical algebraic toolbox in symplectic geometry [Fuk93, Sei08, FOO+09]. A more detailed exposition
of this algebraic background may be found in [Kel01].

Let k denote some fixed commutative ring of characteristic two. (Usually, this will be some direct
sum of copies of F2 = Z/2Z.)

Sometimes, an associative k-algebra comes as the (co)homology of a chain complex (A, 𝜕) that one
expects to have the structure of a differential algebra, i.e., to admit some multiplication μ : A ⊗ A → A

which is associative and which satisfies the Leibniz rule. (Unless otherwise specified, all tensor products
are over k.) But it sometimes occurs that μ is only associative up to a homotopy, i.e., there exists a map μ3
such that when a1, a2, a3 ∈ A are closed (i.e., 𝜕ai = 0), we have

μ(μ(a1 ⊗ a2) ⊗ a3) + μ(a1 ⊗ μ(a2 ⊗ a3)) = 𝜕μ3(a1 ⊗ a2 ⊗ a3).

If μ3 now only satisfies associativity up to homotopy, then we get further maps μ4, and so on.

Definition 4.1. An A∞ algebra over k is a k-moduleA, along with multiplication maps μi : A⊗i → A

for i ≥ 1. The multiplication maps satisfy the following compatibility condition:

∑︁
i+j=n+1

n−j+1∑︁
ℓ=1

μi (a1 ⊗ · · · ⊗ aℓ−1 ⊗ μj (aℓ ⊗ · · · ⊗ aℓ+j−1) ⊗ aℓ+j ⊗ · · · ⊗ an) = 0.

We denote the A∞ algebra by A, and call its underlying k-module A.

Note that an A∞ algebra comes with a map μ1 : A → A as well. This is the same as the map 𝜕 in the
case that A comes from a chain complex (A, 𝜕). When working over general k, we actually require that
A is a graded k-module. The compatibility condition then comes with certain signs. In this context, μ1
is a differential, so that an A∞ algebra with μi = 0 for i ≥ 2 is simply a chain complex. Similarly, if our
only nontrivial multiplication maps are μ1 and μ2, then A is a differential graded algebra.

It turns out that the algebraic structures defined below in the bordered Heegaard Floer package may
all be equipped with a grading by a certain noncommutative group. We will not spend time defining this
grading. As such, we define our A∞ objects without grading, noting simply that this is okay because k
has characteristic two.

We say that A is strictly unital if there is an element 1 ∈ A such that μ2(a, 1) = μ2(1, a) = a and
μi (a1 ⊗ · · · ⊗ ai) = 0 if i ≠ 2 and aj = 1 for some j. We say that it is operationally bounded if μi = 0
for all but finitely many i.

There is a graphical representation of the compatability condition in Definition 4.1. In particular,
think of A⊗i as being denoted by i parallel, downward-oriented strands. Let μi be represented by the i
strands of A⊗i meeting at a “vertex,” which we label by μi, and exiting as one strand below. For example,
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μ3 may be denoted by

μ3

The compatibility condition on A
⊗i is obtained by summing over all ways to use two μj ’s to get from i

parallel strands to one single strand. For example, the compatibility condition for μ3 says that

μ1

μ3

+
μ1

μ3

+
μ1

μ3

+
μ3

μ1

+
μ2

μ2

+
μ2

μ2

= 0.

The last two terms are exactly the usual associativity terms, while the first four are the homotopy up to
which μ2 is associative.

A more concise way to draw these diagrams is to combine all the multiplication maps into a single
map

μ : T ∗(A) ≔
∞⊕
n=0

A
⊗n → A

on the tensor algebra. By convention, μ0 = 0. There is now an endomorphism D on T ∗(A) defined by

D(a1 ⊗ · · · ⊗ an) =
n∑︁
j=1

n−j+1∑︁
ℓ=1

a1 ⊗ · · · ⊗ aℓ−1 ⊗ μj (aℓ ⊗ · · · ⊗ aℓ+j−1) ⊗ · · · ⊗ an. (4.1)

Then the compatibility condition for A∞ algebras may be written as μ ◦ D = 0 or, equivalently, as
D ◦D = 0. Graphically, we use doubled arrows to indicate elements ofD and single arrows, as before, to
indicate elements of A. Thus we may depict this relation as

D

μ

or
D

D

.

We have discussed A∞ algebras, but in fact the invariant ĈFA is an A∞ module over some algebra.
(In fact, it is a module over a differential graded algebra. In particular, we do not need all the details of
A∞ algebras.) We define this next.
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Definition 4.2. A (right)A∞ moduleM over an A∞ algebra A is a k-module M with operations

mi : M ⊗ A
⊗(i−1) → M

for all i ≥ 1. We ask that these maps satisfy the following compatibility condition:

0 =
∑︁

i+j=n+1
mi (mj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1)

+
∑︁

i+j=n+1

n−j∑︁
ℓ=1

mi (x ⊗ a1 ⊗ · · · ⊗ aℓ−1 ⊗ μj (aℓ ⊗ · · · ⊗ aℓ+j−1) ⊗ aℓ+j−1 ⊗ · · · ⊗ an−1).

If M is an A∞ module over a strictly unital A∞ algebra A, then we call M strictly unital if, for
every x ∈ M, we have m2(x ⊗ 1) = x and mi (x ⊗ a1 ⊗ · · · ⊗ ai−1) = 0 if i ≠ 2 and some aj = 1.
Furthermore, we say that M is bounded if mi = 0 for all but finitely many i.

We may draw a similar graphical representation forM×A⊗(i−1) as forA⊗i. The only difference is that
we now distinguish the leftmost strand, which represents our factor of M in the module, by drawing it
as a dashed line instead. The output of mi is an element of M, hence is also “colored” by M, i.e., drawn
as a dashed line. For example, m3 may be drawn as

m3 .

In our context, where μi = 0 for all i > 2, the module compatibility condition may be written as

0 =
∑︁

i+j=n+1
mi (mj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1)

+
n−1∑︁
ℓ=1

mn(x ⊗ a1 ⊗ · · · ⊗ aℓ−1 ⊗ μ1(aℓ ) ⊗ aℓ+1 ⊗ · · · ⊗ an−1) (4.2)

+
n−2∑︁
ℓ=1

mn−1(x ⊗ a1 ⊗ · · · ⊗ aℓ−1 ⊗ μ2(aℓ ⊗ aℓ+1) ⊗ aℓ+2 ⊗ · · · ⊗ an−1).

For m3, this is drawn as

m1

m3

+
m2

m2

+
m3

m1

+
μ1

m3

+
μ1

m3

+
μ2

m2

= 0.

We may again write this in terms of the tensor algebra. Let Δ : T ∗(A) → T ∗(A) ⊗ T ∗(A) be the
comultiplication map

Δ(a1 ⊗ · · · ⊗ an) =
n∑︁

m=0
(a1 ⊗ · · · ⊗ am) ⊗ (am+1 ⊗ · · · ⊗ an).
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Then we may draw the compatibility condition for A∞ modules as follows:

Δ

m

m

+
D

m

= 0.

It will turn out that ĈFA(Y ) is defined up to homotopy equivalence. To understand the A∞ version
of (chain) homotopy equivalence, we must first understand what a homomorphism ofA∞ modules looks
like.

Definition 4.3. A (strictly unital)A∞ homomorphism between the strictly unital rightA∞ modules
M and Ñ over a strictly unital A∞ algebra A is a collection of maps fi : M ⊗Ai−1 → N for i ≥ 1 which
satisfies the compatibility condition

0 =
∑︁

i+j=n+1
ni (fj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1)

+
∑︁

i+j=n+1
fi (mj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1)

+
∑︁

i+j=n+1

n−j∑︁
ℓ=1

fi (x ⊗ a1 ⊗ · · · ⊗ aℓ−1 ⊗ μj (aℓ ⊗ · · · ⊗ aℓ+j−1) ⊗ aℓ+j ⊗ · · · ⊗ an−1),

where ni are the multiplication maps of Ñ , as well as the unital conditions f1(1M) = 1N and

fi (x ⊗ a1 ⊗ · · · ⊗ ai−1) = 0

if i > 1 and some aj = 1A.

Graphically, this compatibility condition may be drawn as

Δ

m

f

+

Δ

f

m
′

+
D

f

Here, we use dashed lines to represent elements of M. Dotted lines represent elements of M′.

69



Consider, for example, the identity homomorphism IM of a strictly unital A∞ module M. It is de-
fined by setting (IM)1(x) ≔ x and (IM)i (x⊗A⊗(i−1)) = 0 for all i > 1. This is an A∞ homomorphism.

The composite of A∞ homomorphisms f : M → N and g : N → P is given by

(g ◦ f )n(x ⊗ a1 ⊗ · · · ⊗ an−1) =
∑︁

i+j=n+1
gi (fj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1).

A strictly unital homomorphism is bounded if fi = 0 for all but finitely many i.
Recall that, in the typical (i.e., notA∞) setting, a chain homotopy between f and g is a family of maps

hi such that fi − gi = dhi−1 + hi+1d. (The differential d is similar to the map μ1.) The A∞ version of this
should be this equality, up to a certain homotopy involving higher multiplication maps. Indeed, we may
make the following definition.

Definition 4.4. Let M and M′ be strictly unital A∞ modules over the A∞ algebra A. Consider a
collection of maps

hi : M ⊗ A
⊗(i−1) → M

′

with hi (x ⊗ a1 ⊗ · · · ⊗ ai−1) = 0 whenever i > 1 and aj = 1 for some j. Then define fn by

fn(x ⊗ a1 ⊗ · · · ⊗ an−1) =
∑︁

i+j=n+1
hi (mj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1)

+
∑︁

i+j=n+1
m

′
i
(hj (x ⊗ a1 ⊗ · · · ⊗ aj−1) ⊗ aj ⊗ · · · ⊗ an−1)

+
∑︁

i+j=n+1

n−j∑︁
ℓ=1

hi (x ⊗ a1 ⊗ · · · ⊗ aℓ−1 ⊗ μj (aℓ ⊗ · · · ⊗ aℓ+j−1) ⊗ · · · ⊗ an−1).

This map f is an A∞ homomorphism, and we call it nullhomotopic. Two maps f, g : M → M′ are
homotopic if f − g is nullhomotopic. Finally, if there are maps f : M → M′ and g : M′ → M such
that g ◦ f and f ◦ g are homotopic to the identity homomorphisms IM and IM′ , respectively.

This definition is somewhat convoluted, but is related to the typical definition of chain homotopy as
follows: One may upgrade the mapsm = {mi} to an endomorphismm ofM⊗T ∗(A). This definition is
analogous to the definition ofD in theA∞ algebra case. Similarly, we may promote the homomorphisms
f and g, as well as the homotopy h, to maps f , g, h : M ⊗ T ∗(A) → M ⊗ T ∗(A). Then the condition
in Definition 4.4 may be written as

h ◦m +m′ ◦ h = f + g.
This looks exactly like the condition for h to be a chain homotopy between chain maps f and g.

The condition that f, g : M → M′ are homotopic is represented graphically as follows:

Δ

m

h

+

Δ

h

m
′

+
D

h

= f + g
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We conclude with the definition of theA∞ tensor product, which will be useful for stating the pairing
theorem (Theorem 4.44).

Definition 4.5. LetA be anA∞ algebra overk,M a rightA∞ module overA, andN a leftA∞ module
over A. Then their A∞ tensor product is the chain complex

M⊗̃N ≔ M ⊗ T ∗
A ⊗ N

with differential 𝜕 defined by

𝜕 (x ⊗ a1 ⊗ · · · ⊗ an ⊗ y) ≔
n+1∑︁
i=1

mi (x⊗a1 ⊗ · · · ⊗ ai−1) ⊗ ai ⊗ · · · ⊗ an ⊗ y

+
n∑︁
i=1

n−i+1∑︁
ℓ=1

x ⊗ a1 ⊗ · · · ⊗ μi (ai ⊗ · · · ⊗ aℓ+i−1) ⊗ · · · ⊗ an ⊗ y

+
n+1∑︁
i=1

x ⊗ a1 ⊗ · · · ⊗ an−i+1 ⊗ mi (an−i+2 ⊗ · · · ⊗ an ⊗ y).

4.2 The algebra associated to a pointed matched circle
In this section, we define the algebra A(Z) which is associated to a pointed matched circle Z . In fact,
this algebra is a differential graded algebra, but, as usual, we will not discuss the grading. The bordered
invariants will be modules over this algebra.

To defineA(Z), we must discuss the strands algebraA(n, k). A strand diagramwith n places and
k strands is created as follows: First, on both the left and right side, one draws n dots numbered 1 (at the
bottom) to n (at the top). Then a strand diagram is obtained by drawing a set of k strands going up and
to the right such that no two strands cross more than once and no two strands can have either the same
start or end. Consider, for example, the diagram

1
2
3
4
5

1
2
3
4
5

,

which is an element of A(5, 3). Note that horizontal strands are permitted, but not strands which go
down and to the right.

Definition 4.6. The strands algebra with n places and k strands, denoted A(n, k), is the F2-vector
space generated by these strand diagrams. The strands algebraA(n) with n places is the direct sum

A(n) =
n⊕
k=0

A(n, k).

That this is an algebra, and not merely a vector space, requires that we define a multiplication on the
strands algebra. When the concatenation of a and b is defined (i.e., when the right side of a matches the
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left side of b) and when the juxtaposition of the two diagrams has no twice-crossing strands, we declare
a · b to be this juxtaposition. Otherwise, we declare the product to be zero. In particular, if the fragment

appears, then the product is zero.
There is a boundary operator defined on the strands algebra as follows: There is a unique way to

smooth a single crossing in a strand diagram, namely by

.

The differential of a strand diagram is then the sum of all ways to smooth a single crossing, where we
declare terms with twice-crossing strands to be zero. For example, we have

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

+ +

.

The first term on the right-hand side vanishes. Note that strand diagrams without crossings have differ-
ential zero.

Lemma 4.7. With the multiplication and boundary operators as defined above, the set A(n, k), and hence

also the direct sum A(n) =
⊕

A(n, k), is a differential algebra.

Proof. Consider the algebraA(n, k) ⊃ A(n, k) which is theF2-vector space generated by strand diagrams
where we do not set diagrams with twice-crossing strands to be zero. (We still do not allow isotoping away
such double crossings.) Then A(n, k) is a differential algebra, and the sub-vector space Ad(n, k) which is
generated by all terms with at least one double crossing is a differential ideal. (See Lemma 3.1 in [LOT18]
for details.) Since A(n, k) = A(n, k)/Ad(n, k), the result follows. □

To a subset S ⊂ {1, . . . , n}, we may associate an idempotent I (S) consisting of a horizontal strand at
each i ∈ S. For example, the following is the idempotent I ({1, 3, 4}) for n = 5:

1
2
3
4
5

1
2
3
4
5

.

Remark 4.8. There is an equivalent way of thinking about the strands algebra. In particular, we may
think of a strand diagram in A(n, k) as representing a partial permutation ϕ : S → T between two
k-element subsets of {1, . . . , n} such that ϕ(i) ≥ i for every i ∈ S. For instance, the element of A(5, 3)
above may be thought of as the permutation 1 ↦→ 5, 2 ↦→ 3, and 4 ↦→ 4. We may denote this by

〈 1 2 4
5 3 4

〉
.

We will sometimes use this notation, as well as the notation (S, T, ϕ), for convenience. Idempotents, for
example, take the form (S, S, idS).
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Now we may define the algebra associated to a pointed matched circle Z = (Z, a,M, z). Recall from
Section 2.2 that a pointed matched circle comprises a circleZ, some set of points a = {a1, . . . , a4k} onZ,
a 2-to-1 matchingM : a → {1, . . . , 2k}, and a basepoint z ∈ Z \ a. Furthermore, recall from Lemma 2.8
that the boundary 𝜕H of a bordered Heegaard diagram is a pointed matched circle whose matching is
determined by which α-arc an intersection point ααα ∩ 𝜕Σ belongs to.

Fix a pointed matched circle Z . Without loss of generality, say that the basepoint z lies between a4k
and a1 and Z is oriented to go from ai to ai+1, so that we may think of Z \ a as a line with 4k points
labeled, in order, by a1, . . . , a4k. These will be the dots on either side of our strand diagram; strands in the
diagram will then represent Reeb chords.

Recall our terminology of nested, interleaved, and abutting Reeb chords from Section 2.2. Recall
also our definition of a consistent set of Reeb chords, i.e., a set ρρρ = {ρ1, . . . , ρj} of Reeb chords such that
the set ρρρ− ≔ {ρ−1 , . . . , ρ−j } of initial endpoints and the set ρρρ+ ≔ {ρ+1 , . . . , ρ+j } of final endpoints both have
exactly j elements.

Definition 4.9. Let ρρρ be a set of Reeb chords. It may be considered as a strand diagram with strands
from ρρρ

− to ρρρ+. The strands algebra element associated to ρρρ, denoted a0(ρρρ) ∈ A(n) is defined to be
the formal sum of all the ways to add horizontal strands to this diagram such that the result is still a strand
diagram. For example, the if ρρρ is the one-element set consisting of the Reeb chord from a2 to a4, then its
associated strands algebra element is

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

+ +

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

+

.

If ρρρ is not consistent, then a0(ρρρ) = 0.

These elements a0(ρρρ), as well as the idempotents I (S) with S ⊂ a, generate A(4k). In particular, the
strands algebra A(4k) has basis as an F2-vector space given by terms of the form I (S)a0(ρρρ).

The algebra A(Z) associated to a pointed matched circle Z with a = {a1, . . . , a4k} is a subalgebra of
A(4k). A section of the 2-to-1 matching M over a subset s ⊂ {1, . . . , 2k} is a subset of a which maps
bijectively to s under M. In other words, because M associates each intersection point ai ∈ ααα ∩ Σ with
the arc αa

j
which contains ai, a section over a subset s of α-arcs consists of an endpoint of each arc in s.

The idempotent associated to s is the sum

I (s) ≔
∑︁

S is a section over s
I (S).

For example, if k = 1 and M is the matching associated to the Heegaard diagram of the genus-1 handle-
body, i.e., M (a1) = M (a3) = 1 and M (a2) = M (a4) = 2, then the idempotent associated to {1, 2}
is

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

+ +

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

+

.

The ring of idempotents associated to Z is generated by I (s) for all subsets s of {1, . . . , 2k}. This ring
is denoted I (Z) and has unit

I ≔
∑︁

s⊂{1,...,2k}
I (s).
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Another way to draw the idempotent I (s) is to draw the matching on the side of the strand diagram,
and to draw dashed horizontal lines at each ai with M (i) ∈ s. The example above can be written as

1
2
3
4

1
2
3
4

.

The dashed horizontal lines indicate that the chord appears in exactly half of the terms in the sum.

Definition 4.10. The algebra associated to a pointed matched circle Z , denoted A(Z), is the sub-
algebra of

⊕2k
i=0 A(4k, i) which is generated (as an algebra) by I (Z) and Ia0(ρρρ)I for every (consistent)

set of Reeb chords ρρρ. The algebra element associated to ρ is Ia0(ρρρ)I. It is the projection of a0(ρρρ) to
A(Z), and is denoted by a(ρρρ). Finally, define the parts of weight i to be

A(Z , i) ≔ A(Z) ∩A(4k, k + i) and I (Z , i) ≔ I (Z) ∩ I (4k, k + i).

Thus our algebra decomposes into the parts of weight i for −k ≤ i ≤ k.

It is not too hard to show that A(Z) is closed under multiplication.
In the previous section, we considered algebras and modules over a ground ringk. We considerA(Z)

to be an algebra over the characteristic-two ring k = I (Z).
The algebra A(Z) has a (vector space) basis over F2 given by all nonzero elements I (s)a(ρρρ). Using

our dashed-line strand diagrams for I (s) from above, we may draw these elements as the strand diagram
for ρρρ, along with 2|s| dashed horizontal lines representing s. We may also write them in two-line notation
as [

x1 ... xm z1 ... zℓ
y1 ... ym

]
≔ I

(
{M (xi),M (zj)}

)
a(ρρρ)

where ρρρ consists of the m Reeb chords which begin at xi and end at yi.

4.3 The type A module ĈFA

Fix a bordered Heegaard diagram H = (Σ, ααα, βββ, z) which is provincially admissible as in Definition 2.20.
Let Z = 𝜕H be a pointed matched circle (cf. Lemma 2.8).

Then, in this section, we will finally define our first invariant, namely the type A module ĈFA(Y ).
We begin in Section 4.3.1 with the definition of this module. Then in Section 4.3.2, we provide many
examples and eventually prove the fact that this module is in fact an A∞ module over A(Z). Finally,
we state an invariance result in Section 4.3.3, which tells us that we the right A∞ module ĈFA(H) over
A(Z) is, in fact, a bordered 3-manifold invariant.
Remark 4.11. As a brief aside, it turns out that A(Z) is not an invariant of the surface F (Z) which
is specified by the pointed matched circle. In fact, if Z and Z′ are pointed matched circles representing
diffeomorphic surfaces, then in generalA(Z) andA(Z′) do not have the same rank. But there is a derived
equivalence between the module categories of A(Z) and A(Z′). See Theorems 1 and 9 in [LOT15].
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4.3.1 Definition of the type A module

The type A invariant ĈFA(H) is generated, as a vector space over F2, by the generators 𝔖(H) of the
bordered Heegaard diagram. Recall that o(x) ≔ {i : x ∩ α

a

i
≠ ∅} ⊂ {1, . . . , 2k} is the set of α-arcs

which are occupied by some xi. (Since the x’s here are generators, and not merely generalized generators,
we know that each α-arc contains at most one xi.)

For each x ∈ 𝔖(H), define IA(x) ≔ I (o(x)) ∈ A(Z , 0). Then we may define a right action of
I (Z) on ĈFA(H) as follows:

x · I (s) ≔
{
IA(x) if s = o(x),
0 otherwise.

This is only nontrivial if s has k elements, i.e., if I (s) ∈ A(Z , 0). This action extends to an action of
A(Z) on ĈFA(H) which is trivial on summands A(Z , i) with i ≠ 0.

We would like to define multiplication maps

mn+1 : ĈFA(H) ⊗ A(Z)n → ĈFA(H).

The tensor products above are all over k = I (Z). It turns out to be sufficient to define mn+1 only on
basis elements x⊗ a(ρρρ1) ⊗ · · · ⊗ a(ρρρn) such that, with ρ⃗ρρ denoting the sequence

(
ρρρ1, . . . , ρρρn

)
, the pair (x, ρ⃗ρρ)

is strongly boundary monotone as in Definition 3.32. This is thanks to the following lemma.

Lemma 4.12 ([LOT18, Lemma 7.2]). Let x ∈ 𝔖(H) and ρ⃗ρρ = {ρρρ1, . . . , ρρρn} be a sequence of nonempty sets

of Reeb chords. Then (x, ρ⃗ρρ) is strongly boundary monotone if and only if

IA(x) ⊗ a(ρρρ1) ⊗ · · · ⊗ a(ρρρn) ≠ 0.

This means that, in order to define mn+1(x, a(ρρρ1), . . . , a(ρρρn)), we may use the associated source-
independent moduli spacesMB(x, y; ρ⃗ρρ) from Section 3.6. (Here, and later on, we use commas to separate
the tensor factors which are inputted into mn+1.)

Definition 4.13. Let J be an almost complex structure on Σ× [0, 1] ×Rwhich is admissible, in the sense
of Definition 3.26, and which achieves transversality, so that Proposition 3.29 holds. Let ρ⃗ρρ = (ρρρ1, . . . , ρρρn)
be a sequence of nonempty sets of Reeb chords. If (x, ρ⃗ρρ) is strongly boundary monotone, then make the
following definitions:

mn+1(x, a(ρρρ1), . . . , a(ρρρn)) ≔
∑︁

y∈𝔖(H)

∑︁
B∈π2 (x,y)
ind(B,⃗ρρρ)=1

#
(
MB(x, y; ρ⃗ρρ)

)
y

m2(x, I) ≔ x
mn+1(x, a(ρρρ1) . . . , I, . . . , a(ρρρn)) ≔ 0 if n > 1.

Here I is the unit of the ring I (Z).

For convenience, we will sometimes denote m1(x) by 𝜕x and m2(x, a) by x · a. Note that this 𝜕 is
different from the differential 𝜕 which makesA(n) into a differential algebra. Note also that nonzero co-
efficientsm1(x) come from curves inMB(x, y; ρ⃗ρρ) where ρ⃗ρρ = ∅. Since ρ⃗ρρ is a partition of the east punctures,
this means that m1(x) counts curves which do not have any east punctures, i.e., which do not approach
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𝜕Σ. The coefficient of a generator y in m1(x) is given by the number of provincial holomorphic curves
connecting x to y.

With these multiplication maps, ĈFA(H) becomes a strictly unital right A∞ module over A(Z).
Before we show why these maps mn+1 fulfill the compatibility condition for an A∞ module, we verify
that the definitions make sense at all.

Lemma 4.14. If H is provincially admissible, then the sum appearing in the definition of mn+1 is finite.

If H is in fact admissible, then mn+1 = 0 for all but finitely many n. (Thus the type A structure will be

operationally bounded.)

Proof. There are only finitely many generators y ∈ 𝔖(H) in the first place. By Lemma 3.11, we know
that any B with MB(x, y; ρ⃗ρρ) ≠ ∅ must have B positive. But provincial admissibility implies by Proposi-
tion 2.23 that there are only finitely many positive classesB ∈ π2(x, y) whose boundary on 𝜕Σ is given by
some predetermined Reeb chords ρ⃗ρρ. Thus the sum is finite. The number of elements in eachMB(x, y; ρ⃗ρρ)
is finite thanks to Proposition 3.54. (Recall that compact 0-dimensional manifolds are just finite sets of
points, after all.)

To show the second statement, let |B| be the sums of all the local multiplicities of the regions in Σ.
Recall that mn+1 is only nonzero when ρ⃗ρρ consists of n nonempty sets of Reeb chords. Then the only
nonzero terms in mn+1 must involve homology classes B with |B| ≥ n. After all, the sum of the local
multiplicities of suchB at the regions adjacent to 𝜕Σ should be n. But recall by Proposition 2.24 that, for
any two generators x and y, there are only finitely many positive domains which connect them. Again,
there are only finitely many generators, so for all |B| > N for some large N , the moduli space MB is
empty. Thus mn+1 = 0 for all n > N . □

Remark 4.15. Recall from Remark 2.25 that π2(x, y) is nonempty if and only if x and y induce the same
spinc structure. This means that the moduli space MB(x, y; ρ⃗ρρ) is nonempty only if 𝔰z(x) = 𝔰z(y), so we
may decompose ĈFA(H) into

⊕
ĈFA(H, 𝔰), where 𝔰 ranges over all spinc structures on the 3-manifold

Y represented by H and where ĈFA(H, 𝔰) is the part of ĈFAwhich only involves generators that induce
the spinc class 𝔰. This is useful for constructing a grading on ĈFA, but we will not spend time on this
detail here.

4.3.2 Compatibility with the algebra

We have thus defined ĈFA(H), though we have not actually shown that it is actually anA∞ module over
A(Z). In fact, we have the following statement.

Theorem 4.16. If H is provincially admissible and Z = 𝜕H, then

(
ĈFA(H), {mi}

)
is a (right) A∞

module over A(Z).

To prove this theorem, it suffices to prove Equation (4.2). Roughly speaking, this amounts to count-
ing the ends of the index-2 moduli spaces. In particular, the terms in the A∞ compatibility equation
correspond to a given type of end, so Theorem 3.53 implies the compatibility.

Before explaining which terms correspond to which end, we provide a few examples which suggest the
more general argument for compatibility and give geometric intuition for theA∞ compatibility equation.
Compare these examples with Examples 3.55 to 3.58.
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3

2

1a

b

c

Figure 4.1: The local picture in Example 4.17.

Example 4.17. Consider Figure 4.1. The ĈFA module of this local picture has three generators, namely
{a}, {b}, and {c}. The relevant generators of the strands algebra are

[
1
2
]

,
[ 2

3
]

, and
[ 1

3
]

. (In Example 3.55,
we denoted the Reeb chord

[
1
2
]

, for example, by ρ12.)
There are two regions in Figure 4.1, namely the rectangle 12ba and the rectangle 23cb. Both regions

touch 𝜕Σ and hence are not provincial. Since m1 = 𝜕 counts provincial domains between generators,
this means that 𝜕 is trivial: 𝜕{a} = {a}, for example.

The compatibility condition for m2 says that

𝜕x · ρρρ + x · 𝜕ρρρ + 𝜕 (x · ρ⃗ρρ) = 0

for any generator x and Reeb chord ρρρ. (Note that 𝜕ρρρ is the boundary operator on the differential alge-
bra A(Z), while 𝜕x refers to the map m1 which counts provincial domains between generators.) Each
of these terms vanishes: The differential on the strands algebra vanishes, since there are no crossing in
the strand diagrams of

[
1
2
]

,
[ 2

3
]

, and
[ 1

3
]

, while the differential on ĈFA vanishes, since there are no
provincial domains.

In fact, in this case, we have mi = 0 for all i ≥ 3. In particular, we have genuine associativity, instead
of just associativity up to homotopy, so that ĈFA is actually a differential module. To see this, it is enough
to show that

(x · ρρρ1) · ρρρ2 + x · (ρρρ1 · ρρρ2) = 0.

Because our only nontrivial multiplications are

a ·
[

1
2
]
= b

b ·
[ 2

3
]
= c

a ·
[ 1

3
]
= c,

the only case to check is that (
a ·

[
1
2
] )

·
[ 2

3
]
+ a ·

( [ 1
2
]
·
[ 2

3
] )

= 0.

But both terms equal c.
One way to understand this associativity geometrically is as follows. Recall from Example 3.55 that

the index-two moduli space from {a} to {c} with asymptotics at east infinity given by
{[

1
2
]
,
[ 2

3
]}

has
two ends: a two-story end and a split curve (i.e., collision of levels) end. The two-story end corresponds
to the term (a ·

[
1
2
]
) ·

[ 2
3
]

: The product a ·
[

1
2
]

counts curves which begin at a and end at b via the Reeb
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chord ρ12, while the subsequent product with
[ 2

3
]

counts the second story of the holomorphic building,
which ends at {c} via the Reeb chord ρ23. On the other hand, the term a ·

( [ 1
2
]
·
[ 2

3
] )

counts curves
which converge to the join of

[
1
2
]

and
[ 2

3
]

, and hence which represent a collision of levels. Thus showing
associativity in this context amounts to counting ends of a given index-two moduli space, which is 0 mod
2 by Theorem 3.53.

Example 4.18. Now consider Figure 4.2. This has four generators, namely {a, c}, {a, d}, {b, c}, and

1

2

3

4

a

b

c

d

Figure 4.2: The local picture in Example 4.18.

{b, d}. Since none of the regions shown in this local picture are provincial, we again have that 𝜕 is trivial.
The nontrivial m2 operations are

{a, c} ·
[ 1 3

2
]
= {b, c}

{a, c} ·
[ 3 1

4
]
= {a, d}

{a, c} ·
[ 1 3

2 4
]
= {b, d}

{b, c} ·
[ 3 2

4
]
= {b, d}

{a, d} ·
[

1 4
2

]
= {b, d}

Note that, here, we have strands algebra elements like
[ 1 3

2
]

to indicate that the second sheet of the cov-
ering over [0, 1] × R is provincial, with boundary on the third α-arc (or, rather, the α-arc corresponding
to the point 3 on the boundary).

This multiplication, like in the previous example, is associative. The only equation to check is that(
{a, c} ·

[ 1 3
2

] )
·
[ 3 2

4
]
+ {a, c} ·

( [ 1 3
2

]
·
[ 3 2

4
] )

= 0. (4.3)

But
[ 1 3

2
]
·
[ 3 2

4
]
=

[ 1 3
2 4

]
, and so both terms are {a, c} ·

[ 1 3
2 4

]
= {b, d}.

Geometrically, this equation is given by counting ends of the moduli space from x = {a, c} to y =

{b, d} with asymptotics at east infinity given by
[ 1 3

2 4
]

such that the Reeb chord from 3 to 4 occurs before
the Reeb chord from 1 to 2. The first term in Equation (4.3) represents the holomorphic building end,
in which we approach ρ12 infinitely far before we approach ρ34. In the language of Example 3.56, this
corresponds to the two-story end which occurs when ev34 − ev12 = ∞. The second term occurs at the
collision of levels end which occurs when ev34 − ev12 = 0. Thus the two terms correspond to the two
ends of the moduli space from Example 3.56. Proving that the ĈFA algebra of Figure 4.2 is compatible
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with the strands algebra is thus equivalent to stating that a certain moduli space has an even number of
ends.

Example 4.19. The generators of Figure 4.3 are {a, d}, {a, e}, {b, c}, and {b, e}. We now have the fol-

3

2

1a

b

c

d

e

Figure 4.3: The local picture in Example 4.19.

lowing nontrivial multiplications in ĈFA:

𝜕{a, d} = {b, c}
{a, e} ·

[ 1 3
2

]
= {b, e}

{b, c} ·
[ 1 2

3
]
= {b, e}

{a, d} ·
[ 1 2

2 3
]
= {b, e}

{a, d} ·
[ 2 1

3
]
= {a, e}

The only nontrivial A∞ relation is

(𝜕{a, d}) ·
[ 1 2

3
]
+ {a, d}𝜕

[ 1 2
3

]
= 0.

Recall that 𝜕
[ 1 2

3
]

refers to the boundary operator on the strands algebra, which is itself a differential
algebra, whereas the 𝜕 in 𝜕{a, d} refers to the map m1 on ĈFA.

The first term in the A∞ relation above corresponds to the two-story end from Example 3.57. The
first story is represented by 𝜕{a, d}, while the second story is represented by the product with

[ 1 2
3

]
. The

second term corresponds to the join curve end when the branch point escapes to east infinity.

So far, all of our type A modules have been genuine differential modules. If one checks ĈFA for
the more complicated diagram for Example 3.58, one obtains a differential module again. In general,
however, this is not the case, and our higher multiplications m3, m4, . . . are, in fact, necessary.

Example 4.20. Consider the local Heegaard diagram and corresponding shaded domain D1 + D2 in
Figure 4.4. The type A module is generated by {a, c}, {b, c}, {b, d}, and {a, d}. The disk D1 from d to c
is counted in the moduli spaces involved in the definition of 𝜕. Thus

𝜕{a, d} = {a, c} and 𝜕{b, d} = {b, c}.

We may choose J so that there is a holomorphic map whose projection to Σ looks like D2. Thus

{a, d} ·
[ 1

3
]
= {b, d}.
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3

2

1a

b

c

d
D1

D2

Figure 4.4: A local picture which demonstrates that ĈFA(H) need not be associative. The unla-
beled point inααα∩βββ is never part of a generator. After all, a generator must have either c or d, since
they are the only generators lying on the α-curve bounding D1. (While this curve is drawn as an
arc, we imagine it closing off somewhere away from this local picture.) But since only one element
in a generator can lie on the β-circle in the middle, no generator can include this unlabeled point.

To understand this, consider the rightmost diagram in Figure 4.5. The green slit goes from d to some
point on the red circle. This point is the unique point such that the slit domain (shaded in gray) is con-
formally equivalent to an annulus which is a branched double cover of [0, 1] × R.

But note that associativity fails because

{a, d} ·
( [ 1

2
]
·
[ 2

3
] )

= {a, d} ·
[ 1

3
]
= {b, d} ≠ 0 =

(
{a, d} ·

[
1
2
] )

·
[ 2

3
]
. (4.4)

(The last equality follows from the fact that {a, d} ·
[

1
2
]
= 0.) The term on the left-hand side of Equa-

3

2

1a

b

c

d
3

2

1a

b

c

d
3

2

1a

b

c

d

Figure 4.5: Ends of the moduli space in question.

tion (4.4) corresponds to the rightmost figure in Figure 4.4, in which a split curve degenerates. In partic-
ular, the split curve end corresponds to an element of MD1+D2 ({a, d}, {b, d}, {ρ13}). This is indeed an
end of the moduli space MD1+D2 ({a, d}, {b, d}, {ρ12, ρ23}).

But this time, because the right-hand side of Equation (4.4) is zero, we have not yet accounted for the
other end of this moduli space. In fact, there is also a two-story end, seen on the left side of Figure 4.5.
This building is an element of MD1 ({a, d}, {a, c}) × MD2 ({a, c}, {b, d}, {ρ12, ρ23}). That is, the first
story, which comes from 𝜕{a, d}, corresponds to the regionD1. The second story occurs by approaching
the Reeb chords

[
1
2
]

and
[ 2

3
]

at the same time. Algebraically, then, this term corresponds to

m3
(
𝜕{a, d},

[
1
2
]
,
[ 2

3
] )

= m3
(
{a, c},

[
1
2
]
,
[ 2

3
] )

= {b, d}.

Thus we see that the A∞ associativity relation, which says that

{a, d} ·
( [ 1

2
]
·
[ 2

3
] )

+
(
{a, d} ·

[
1
2
] )

·
[ 2

3
]
+m3(𝜕{a, d},

[
1
2
]
,
[ 2

3
]
) = 0,
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holds, since the middle term is zero and the other two terms correspond to ends of an index-two moduli
space. (Note that we do not have any other terms since 𝜕

[
1
2
]
= 𝜕

[ 2
3
]
= 0 and 𝜕{b, d} = 0.)

Example 4.21. The examples we have discussed thus far have involved local pictures of bordered Hee-
gaard diagrams. We now do an example in full. Recall the example of a bordered Heegaard diagram H
for the genus-1 handlebody in Figure 2.6. It will be helpful for our purposes to draw this diagram as in
Figure 4.6. There is only one generator in this example, namely {x0}. Note that there are only two re-

1

2

3

4
z

=x0
1

2
3

4

x0

z

Figure 4.6: A bordered Heegaard diagram for the genus-1 handlebody.

=

Figure 4.7: The shaded region indicates a curve in MB(x0, x0; ρ23, ρ12) which is counted in the
x0-coefficient of m3(x0, ρ23, ρ12).

gions: One is the shaded domain D(B) on the left side of Figure 4.7, while the other is its complement.
The latter crosses z, though, so our holomorphic curves must project only to the regionD(B). As shown
in Figure 4.7 and Figure 4.8, then, we have

m3(x0, ρ23, ρ12) = x0 and m4(x0, ρ23, ρ13, ρ12) = x0.

In general, our only nontrivial multiplications are these higher multiplications of the form

mn+2(x0, ρ23, ρ13, . . . , ρ13, ρ12) = x0,

where there are n copies of ρ13 = ρ12 ⊎ ρ23. It is straightforward to verify that this obeys our A∞ compat-
ibility relations. (Roughly speaking, the second term in Equation (4.2) vanishes, while the first and third
terms cancel out.)

In this case, not only is ĈFA(H) not a differential module, but it is also, in fact, an unbounded A∞
module. Thus H could not be an admissible Heegaard diagram, thanks to Lemma 4.14. Indeed, the
domain D(B) is a periodic domain, since B ∈ π2(x, x), but has only positive coefficients.
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Figure 4.8: By doubling the domain, we obtain a curve in M2B(x0, x0; ρ23, ρ13, ρ12) which is
counted in the x0-coefficient of m4(x0, ρ23, ρ13, ρ12).

Example 4.22. The bordered Heegaard diagram H′ in Figure 4.9, like that of Figure 4.6, represents the
genus-1 handlebody. There is a provincial domain between y and w, so 𝜕y = w. Our only nontrivial

1

2

3

4
z

=x

x

1
2

3

4z
y

w

y w

Figure 4.9: This is a different bordered Heegaard diagram representing the standard genus-1 han-
dlebody. There are three regions not adjacent to z. (Note that the region to the left of y is the same
as the region to the right of w.)

multiplications are

y ·
[

1
2
]
= x

x ·
[ 2

3
]
= w

y ·
[ 1

3
]
= w.

Higher multiplications m3, m4, . . . vanish identically. This is thus an honest differential module which
satisfies associativity on the nose, as opposed to up to homotopy.

Remark 4.23. One might wonder whether there is some condition on H which makes ĈFA(H) a gen-
uine differential module. A bordered Heegaard diagram is callednice if each region which does not touch
the basepoint z ∈ 𝜕H is a topological disk with at most four corners. In this case, the associated type A
module does not have higher differentials. Loosely speaking, nice diagrams do not have higher multipli-
cations because any holomorphic curve u ∈ MB(x, y; ρ⃗ρρ) whose source goes to east infinity must escape
toward east infinity at a single time. ThusMB(x, y; ρ⃗ρρ) is empty if ρ⃗ρρ has more than one part. Note that the
regions D1 in Example 4.20 and B in Example 4.21 are both annuli, so the Heegaard diagrams in those
examples are not nice. This is why the corresponding type A modules are not differential modules.
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Furthermore, one may always obtain a nice Heegaard diagram by performing “finger moves.” These
moves look like the move between Examples 4.21 and 4.22. See [LOT18, Chapter 8] and [SW10] for
more details on nice diagrams.

We now prove that ĈFA(H) is indeed an A∞ module over A(Z).

Proof of Theorem 4.16. We would like to show that

0 =
∑︁

i+j=n+1
mi (mj (x, a1, . . . , aj−1), . . . , an−1)

+
n−1∑︁
ℓ=1

mn(x, a1, . . . , 𝜕aℓ , . . . , an−1)

+
n−2∑︁
ℓ=1

mn−1(x, a1, . . . , aℓaℓ+1, . . . , an−1).

Consider the y-coefficient of each term above, where y ∈ 𝔖(H) is arbitrary. The first term corre-
sponds to two-story ends in all moduli spaces MB(x, y; ρ⃗ρρ) for B ∈ π2(x, y), ind(B, ρ⃗ρρ) = 1, and (x, ρ⃗ρρ)
strongly boundary monotone.

The second term corresponds to all join curve ends and odd shuffle curve ends. Showing this takes a
little bit of work: First, note that 𝜕a(ρρρ) is the sum of all a(ρρρ′) where ρρρ′ is obtained from ρρρ in one of two
ways: (1) by replacing some chord ρ1 ∈ ρρρ with a splitting {ρ2, ρ3}, i.e., with a pair such that ρ1 = ρ2 ⊎ ρ3,
such that the result ρρρ′ is consistent and has no double crossings; or (2) by replacing a nested pair of Reeb
chords in ρρρ by its corresponding interleaved pair such that no double crossings are introduced. A priori,
however, the east asymptotics of join curve ends and shuffle curve ends may either be inconsistent or have
double crossings. It is easy to show, however, that such cases never occur as elements of the boundary
𝜕MB(x, y;ρρρ′).

The final term corresponds to the collisions of levels. We must argue analogously to the second term
to verify this. See [LOT18, Section 7.2] for details.

Note that Theorem 3.53 implies the result. In particular, the sum in theA∞ compatibility equation is
exactly equal to the total number of ends of all moduli spacesMB(x, y; ρ⃗ρρ) for suitableB and ρ⃗ρρ, minus any
even shuffle curve ends. But there are an even number of even shuffle curve ends, proving the result. □

4.3.3 Invariance

It turns out that, with this definition, the A∞ module ĈFA(H) is actually an invariant of the bordered
3-manifold defined by H. This is thus our first bordered Heegaard Floer invariant.

Theorem 4.24. The A∞ module ĈFA(H) is independent, up to A∞ homotopy equivalence, of the choice

of admissible almost complex structure which achieves transversality. Furthermore, ifH andH′
are provin-

cially admissible bordered Heegaard diagrams for the same bordered 3-manifold (Y,Z , ϕ : F (Z) →
𝜕Y ), then the A∞ A(Z)-modules ĈFA(H) and ĈFA(H′) are homotopy equivalent.

This justifies the notation ĈFA(Y ) for the type A module of the bordered 3-manifold Y . (It would
perhaps be more accurate to write the type A module as ĈFA(Y,Z , ϕ), or as ĈFA(Y, ϕ : F (Z) → 𝜕Y ),
but this is a bit unwieldy.)
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We do not prove this theorem, whose proof is somewhat distinct from the primary narrative thus far
of moduli spaces of holomorphic cures and the degenerations which appear in the compactification. See
[LOT18, Section 7.3] for a full proof.

Example 4.25. Recall the diagrams H and H′ from Examples 4.21 and 4.22. They clearly represent the
same bordered 3-manifold (namely the genus-1 handlebody), since their respective curves only differ by
an isotopy. The A∞ modules ĈFA(H) and ĈFA(H′) are not equal, as the former is unbounded while
the latter is operationally bounded. But they are homotopy equivalent.

First, we construct a homomorphism f : ĈFA(H) → ĈFA(H′). The most natural such homomor-
phism should have f1(x0) = x. To build this into an A∞ homomorphism, we need

f1(x0) ·
[ 2

3
]
= 𝜕f2(x0,

[ 2
3
]
).

Note that, technically, there are three other terms, namely f2(x0, 𝜕
[ 2

3
]
), f2(𝜕x0,

[ 2
3
]
), and f1(x0 ·

[ 2
3
]
).

But because 𝜕
[ 2

3
]
= 0 and H has trivial m1 and m2, it follows that these terms vanish. Since f1(x0) = x,

it follows that f2(x0,
[ 2

3
]
) = y. Note that the corresponding A∞ compatibility equation for any other

basis element a(ρ) of the strands algebra A(Z) is trivially satisfied by setting f2(x0, a(ρ)) = 0, since all
the terms vanish. This completely defines f2 : ĈFA(H) ⊗ A(Z) → ĈFA(H′).

Now the compatibility equations for f3 and f4 say that

f1
(
m

′
3
(
x0,

[ 2
3
]
,
[

1
2
] ) )

= m2
(
f2

(
x0,

[ 2
3
] )
,
[

1
2
] )

+ 𝜕f3
(
x0,

[ 2
3
]
,
[

1
2
] )

f1
(
m

′
4
(
x0,

[ 2
3
]
,
[ 1

3
]
,
[

1
2
] ) )

= m2
(
f3

(
x,

[ 2
3
]
,
[ 1

3
] )
,
[

1
2
] )

+ 𝜕f4
(
x,

[ 2
3
]
,
[ 1

3
]
,
[

1
2
] )
.

Again, there are other terms, but they vanish. (Note that the strand algebra elements do not compose.)
The left-hand side of the f3-compatibility equation is x, as is the first term on the right-hand side, so it fol-
lows that 𝜕f3(x0,

[ 2
3
]
,
[

1
2
]
) = 0. It turns out that we may set f3(x0,

[ 2
3
]
,
[

1
2
]
) = 0. On the other hand,

the compatibility equation for f4 is satisfied if we let f3(x,
[ 2

3
]
,
[ 1

3
]
) = y and f4(x,

[ 2
3
]
,
[ 1

3
]
,
[

1
2
]
) = 0.

This suggests a general formula for f :

f1(x0) = x,

fk(x0, a(ρρρ1), . . . , a(ρρρk−1)) = y when a(ρρρ1) =
[ 2

3
]

and a(ρρρi) =
[ 1

3
]
,

fk(x0, a(ρρρ1), . . . , a(ρρρk−1)) = 0 otherwise.

We may verify that this gives an A∞ homomorphism ĈFA(H) → ĈFA(H′).
Before even trying to show that this is a homotopy equivalence, note that it is a quasi-isomorphism,

i.e., gives an isomorphism on cohomology. After all, the cohomology is generated by {x} (respectively,
{x0}) in ĈFA(H′) (respectively, ĈFA(H)) with trivial differential. The homomorphism f is simply the
isomorphism x0 ↦→ x on cohomology, then.

We briefly indicate how to construct the homotopy equivalence between the type A modules. The
details are very similar to that of the construction of f above. Define g : ĈFA(H′) → ĈFA(H) by

x0 = g1(x) = g2
(
w,

[
1
2
] )

= g3
(
w,

[ 1
3
]
,
[

1
2
] )

= g4
(
w,

[ 1
3
]
,
[ 1

3
]
,
[

1
2
] )

= . . . .

(Everything else gets mapped to zero.)
Notice that (g◦ f ) (x0, a(ρρρ1), . . . , a(ρρρk−1)) = x0 if a(ρρρ1) =

[ 2
3
]

, a(ρρρk−1) =
[

1
2
]

, and the intermediate
algebra elements a(ρρρi) =

[ 1
3
]

. Otherwise, we have (g ◦ f ) (x0, a(ρρρ1), . . . , a(ρρρk−1)) = 0. One may verify
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that this is homotopic to the identity homomorphism on ĈFA(H) via the homotopy with h1(x0) = x0
and higher hi’s vanishing everywhere.

On the other hand, we have (f ◦ g) (x) = x and (f ◦ g) (w, a(ρρρ1), . . . , a(ρρρk−1)) = y if the ρρρi’s are, in
order, some number of

[ 1
3
]

’s, then a
[

1
2
]

, followed by a
[ 2

3
]

, and some number of
[ 1

3
]

’s. Otherwise, we
define f ◦ g to be 0. This is homotopic to the identity homomorphism on ĈFA(H′), this time by the
homotopy with h1 = 0 and hn

(
w,

[ 1
3
]
, . . . ,

[ 1
3
] )

= y for n ≥ 1.

4.4 Type D structures

The other bordered invariant which we will define, denoted ĈFD(Y ), is a somewhat stranger algebraic
creature, namely a module associated to a so-called “type D structure.”

Let A be an A∞ algebra with underlying module A, as usual. Let N be a left k-module and let δ1
N

:
N → A ⊗ N , with tensor product taken over k, as usual. We may now construct a sequence of maps
δ
i

N
: N → A

⊗i ⊗ N given by

δ
0
N
= idN

δ
i

N
= (idA⊗(i−1) ⊗δ1

N
) ◦ δi−1

N

If δi
N
= 0 for sufficiently large i, then we say that (N, δ1

N
) is bounded and we may promote our maps δi

N

to a map on the tensor algebra:

δ : N → T ∗(A) ⊗ N

x ↦→
∞∑︁
i=0

δ
i

N
(x).

Almost by definition, we have the condition that (idA⊗j ⊗δi) ◦ δj = δ
i+j for all i, j ≥ 0. Here, and later

on, we omit the N in the subscript when N is clear from the context. Graphically, we may depict this
relationship as follows:

δ

Δ

=
δ

δ

As in our diagrams from Section 4.1, we use dashed lines to “color” elements of the module, which in this
case is N . We put the dashed lines on the right side this time to indicate that N is a left module.

Remark 4.26. If (N, δ1
N
) is not bounded, we may complete the tensor algebra into T ∗(A) ≔ ∏∞

i=0 A
⊗i.

Then we may still put our maps δi together into a map δ.

Definition 4.27. LetA be anA∞ algebra and (N, δ1
N
) a pair as above. In particular, we letN be a left k-

module and δ1 : N → A⊗N is a map such that either A is operationally bounded or the pair (N, δ1
N
) is

85



bounded. Recall our definition ofD : T ∗(A) → T ∗(A) from Equation (4.1). Then we say that (N, δ1
N
)

is a type D structure over A if
(D ⊗ idN ) ◦ δ = 0.

Graphically, we write this condition as

δ

D

= 0.

In the contexts which we will be concerned about, we will always have A operationally bounded, so
all of our definitions will work for unbounded type D structures too.

Now suppose we have two bounded type D structures (N1, δ
1
N1
) and (N2, δ

1
N2
). Let ψ 1 : N1 →

A ⊗ N2 be a map, and define

ψ
k : N1 → A

⊗k ⊗ N2

x ↦→
∑︁

i+j=k−1
(idA⊗(i+1) ⊗δ j

N2
) ◦ (idA⊗i ⊗ ψ

1) ◦ δi
N1
.

SinceN1 andN2 are bounded, so too isψk in the sense thatψk = 0 for sufficiently large k. Thenψ =
∑
ψ
k

is a map N1 → T ∗(A) ⊗ N2. If we remove the condition that N1 and N2 are bounded, then ψ simply
has codomain T ∗(A) ⊗ N2.

Definition 4.28. A map ψ
1 : N1 → A ⊗ N2 is a type D homomorphism if (D ⊗ idN2) ◦ ψ = 0.

With dashed lines representing elements ofN1 and dotted lines representing elements ofN2, this may be
represented graphically as

ψ

D

= 0

Definition 4.29. Similarly, two type D homomorphisms ψ 1
, ϕ

1 : N1 → A ⊗ N2 are (type D) homo-
topic if there is an analogously constructed h1 : N1 → A ⊗ N2 such that

h

D

= ψ − ϕ ,
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i.e., such that (D ⊗ idN2) ◦ h = ψ − ϕ.

Unraveling these definitions in the case thatA is a differential algebra instead of a generalA∞ algebra,
we see that the compatibility condition is equivalent to the condition that

(μ2 ⊗ idN ) ◦ (idA ⊗δ1
N
) ◦ δ1

N
+ (μ1 ⊗ idN ) ◦ δ1

N
: N → A ⊗ N (4.5)

vanishes. One may rewrite the conditions for homomorphisms and homotopies in a similar way. See
[LOT18, Definition 2.18].

The case in which we are interested is actually even more restricted than simply asking that A is a
differential algebra. In particular, we are interested only in type D structures arising from the following
example.

Example 4.30. LetA be a differential algebra andM a differential module which is free as anA-module.
Consider some basis ofM overA and letX denote the span of this basis, so thatM = A⊗X . Restricting
the boundary operator on M to X gives a map

δ
1 : X → A ⊗ X = M.

The pair (X, δ1) is a type D structure, and restrictions of module maps are type D homomorphisms.

We may go the other direction, and obtain a left module from a type D structure. One may thus
think of a type D structure as an additional combinatorial piece of data on top of the differential module
structure. In particular, we have the following proposition.

Proposition 4.31. Let A be a differential algebra and (N, δ1
N
) a type D structure. Then we may define

an associated differential module N over A. In particular, N has underlying module A ⊗ N, which may

then be given the structure of a (differential) left A-module with maps

m1(a ⊗ x) ≔
[
(μ2 ⊗ idN ) ◦ (idA ⊗δ1

N
) + μ1 ⊗ idN

]
(a ⊗ x)

m2(a ⊗ (b ⊗ x)) ≔ μ2(a ⊗ b) ⊗ x.

Moreover, if we have a type D homomorphism ψ
1 : N1 → A⊗N2 between two type D structures, then there

is an induced (chain) map of differential modules A ⊗ N1 → A ⊗ N2 defined by

a ⊗ x ↦→ (m2 ⊗ idN2) ◦ (idA ⊗ψ 1).

Similarly, homotopies between type D homomorphisms induce chain homotopies between the corresponding

chain maps.

The proof simply involves unwinding the definitions, and we omit it here.
We conclude this somewhat tedious section with the following proposition, which will be useful for

showing that ĈFD(Y ) is invariant up to homotopy.

Proposition 4.32. If N1 and N2 are two type D structures over a differential algebra A, with associated

differential modules N1 and N2, then the correspondence in the previous proposition gives an identification

between a type D homomorphism from N1 to N2 and a homomorphism of the differential modules N1
and N2. Moreover, two type D homomorphisms are homotopic if and only if the corresponding differential

module homomorphisms are A-equivariant homotopic.
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4.5 The type D module ĈFD

As in the definition of ĈFA, let H = (Σ, ααα, βββ, z) be a provincially admissible Heegaard diagram. This
time, let Z = −𝜕H be the reverse of the pointed matched circle. In particular, we let Z = (−𝜕Σ, ααα ∩
𝜕Σ,M, z), where M is the usual matching coming from the α-arcs. Let A(Z) be the associated algebra
of this orientation-reversed pointed matched circle.

4.5.1 Definition of the type D module
The type D module, like the type A module, is defined by counting holomorphic curves satisfying certain
asymptotic conditions at east infinity. As an F2-vector space, the two modules are defined identically, but
the A(Z)-module action is different. It will be a genuine differential module, instead of an A∞ module.
Furthermore, it will be a left module, rather than a right module.

Let X (H) denote the F2-vector space generated by 𝔖(H). We define the idempotent ID(x) to be
exactly the “opposite” of IA(x) in the sense that ID(x) ≔ I ({1, . . . , 2k} \ o(x)) ∈ A(Z , 0). The left

action of I (Z) on X (H) is given by

I (s) · x ≔

{
ID(x) if s = {1, . . . , 2k} \ o(x),
0 otherwise.

Then we define ĈFD(H) by
ĈFD(H) = A(Z) ⊗ X (H),

where the tensor product is again over k = I (Z). In particular, ĈFD(H) is essentially free over A(Z)
and has a very simple module structure:

a · (b ⊗ x) = (ab) ⊗ x.

As in the ĈFA case, the only summand A(Z , i) which acts nontrivially on ĈFD is the summand i = 0.
Recall that ĈFA was an A∞ module whose multiplication maps were defined by counting holomor-

phic curves in MB(x, y; ρ⃗ρρ), where ρ⃗ρρ was a sequence of nonempty sets of Reeb chords. For ĈFD, we only
need to define the differential, as there are no higher multiplications. To define the differential, we only
count curves in MB(x, y; ρ⃗), where ρ⃗ is a sequence of one-element sets of Reeb chords.

If ρ⃗ = ({ρ1}, . . . , {ρn}) is a sequence of one-element sets, then let a (⃗ρ) ≔ a(ρ1) . . . a(ρn) denote
the product of the algebra elements associated to the one-element sets {ρi}. Note that this is, in general,
not equal to a (⃗ρρρ) = a({ρ1, . . . , ρn}). Furthermore, let −⃗ρ = ({−ρ1}, . . . , {−ρn}) denote the sequence of
chords with reversed orientation. Recall that if ρi is a Reeb chord of 𝜕H, then −ρi is a Reeb chord of
Z = −𝜕H.

Definition 4.33. As in the ĈFA case, let J be a fixed almost complex structure on Σ× [0, 1] ×Rwhich is
admissible and which achieves transversality. Let x, y ∈ 𝔖(H) be generators, and letB ∈ π(x, y) connect
the two. Define the coefficient

a
B

x,y ≔
∑︁

ind(B,⃗ρ)=1
(B,⃗ρ) compatible

#
(
MB(x, y; ρ⃗)

)
a(−⃗ρ) ∈ A(Z).
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Then the differential on ĈFD(H) is defined on basis elements by

𝜕 (I ⊗ x) ≔
∑︁

y∈𝔖(H)

∑︁
B∈π2 (x,y)

a
B

x,y ⊗ y.

For convenience, we often write 𝜕x instead of 𝜕 (I ⊗ x). Extending by linearity and the Leibniz rule

𝜕 (a ⊗ x) = (𝜕a) ⊗ x + a ⊗ (𝜕x)

gives a map 𝜕 : ĈFD(H) → ĈFD(H).

Thus far we have defined ĈFD(H) only as a differential module. (In fact, we have not yet proven that
𝜕2 = 0. See Section 4.5.2.) In fact, the I (Z)-module X (H) comes with a map

δ
1
X (H) : X (H) → A(Z) ⊗ X (H) = ĈFD(H)

x ↦→ 𝜕 (I ⊗ x).

Since ĈFD(H) is a differential module, Example 4.30 implies that (X (H), δ1) defines a type D structure
over A(Z) with base ring I (Z). Then Proposition 4.31 implies that ĈFD(H) is the differential module
defined by this type D structure. It turns out that ĈFD(H) is invariant up to homotopy not only as a
module, but in fact as a type D structure.

Lemma 4.34. If H is provincially admissible, then the boundary map 𝜕 is well defined. In particular, the

sum in the definition of 𝜕 is finite for every x ∈ 𝔖(H). Furthermore, if H is in fact admissible, then the

map δ
1

is bounded.

Proof. First, observe by Lemma 3.11 that any B with MB(x, y; ρ⃗) must have B positive. As in the type A
case, we may now apply Proposition 2.23, which says that there are only finitely many classesB ∈ π2(x, y)
for a given ρ⃗. Since there are only finitely many generators y ∈ 𝔖(H) and algebra elements a ∈ A(Z), it
suffices for the first part to simply check that for any given a, there are only finitely many ways to write it
as the product of Reeb chords, so that we sum over finitely many ρ⃗. But this is certainly true, and follows
from the strand diagram interpretation of elements of A(Z). This proves the first part of the lemma.

Note that the coefficient of y ∈ 𝔖(H) in δk(x) counts elements in all products of the form

k∏
i=1

MBi (xi, xi+1; ρ⃗i),

where x1 = x and xk+1 = y. Thus any nonzero δ
k(x) term corresponds to a sequence of generators

{x1, . . . , xk+1} and, by Lemma 3.11 again, positive homology classes Bi ∈ π2(xi, xi+1). Let B ≔
∑
Bi ∈

π2(x, y). This is a positive homology class. The sum |B| of its coefficients is at least k. Since there are only
finitely many positive homology classes, thanks to Proposition 2.24, it follows that there is a maximum
|B| over all positive B, hence an upper bound on k. Thus δk = 0 for all but finitely many k. □

Remark 4.35. As with type A modules, we may decompose the type D module along spinc structures on
Y . Thus we may write ĈFD(H) =

⊕
ĈFD(H, 𝔰), which in theory would help us obtain a grading of

ĈFD(H). Indeed, with some more work, we can show that ĈFD(H) is a differential graded module, and
not just a differential module.
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4.5.2 𝜕2 = 0

While we have been calling ĈFD(H) the type D module, we have not yet even shown that it is actually a
differential module. We will show the following statement in this section.

Theorem 4.36. The boundary operator 𝜕 on ĈFD(H) satisfies 𝜕2 = 0.

As with type A modules, we first discuss a few illustrative examples. Before doing so, we briefly spell
out what exactly 𝜕2 = 0 means in this context. We have explicitly defined 𝜕 on a generator x (or, more
precisely, on I ⊗ x). If a ∈ A(Z) is an arbitrary algebra element, then

𝜕 (a ⊗ x) = (𝜕a) ⊗ x + a ⊗ 𝜕 (I ⊗ x) = (𝜕a) ⊗ x + a · ©­«
∑︁

y∈𝔖(H)
ax,y ⊗ yª®¬ ,

where ax,y ≔
∑
B∈π2 (x,y) a

B
x,y. In particular, it follows that

𝜕2(a ⊗ x) = (𝜕2
a) ⊗ x + 2(𝜕a) ⊗ 𝜕 (I ⊗ x) + a ⊗ 𝜕2(I ⊗ x)

= (𝜕2
a) ⊗ x + 2(𝜕a) (𝜕x) + a · ©­«

∑︁
y∈𝔖(H)

©­«𝜕ax,y ⊗ y +
∑︁

w∈𝔖(H)
(ax,y · ay,w) ⊗ wª®¬ª®¬ .

The first term vanishes because A(Z) is a differential module. The second term vanishes because we are
working in characteristic two. As such, to show 𝜕2 = 0, it is sufficient to show that

𝜕ax,y +
∑︁

w∈𝔖(H)
ax,waw,y = 0 (4.6)

for all x, y ∈ 𝔖(H).

Example 4.37. In Figure 4.10, we have drawn the Heegaard diagram to the right of the pointed matched
circle, unlike in Examples 3.55 and 4.17. This is because ĈFD is defined via an orientation reversal of the

3

2

1 a

b

c

Figure 4.10: The local picture for Example 4.37.

pointed matched circle. (And, in fact, later on in Section 4.6, we will primarily be interested in cutting a
closed 3-manifold into two bordered manifolds, and will compute ĈFA of the left half and ĈFD of the
right half.)
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We have, as before, three generators {a}, {b}, and {c}. Remember that we have orientation-reversed
Reeb chords. Thus our boundary maps are

𝜕{c} =
[ 3 1

2
]
{b} +

[ 3 2
1

]
{a}

𝜕{b} =
[ 2 3

1
]
{a}

Note that we omit tensor products. In particular, technically we should write 𝜕{b} =
[ 2 3

1
]
⊗ {a}. Fur-

thermore, note that, unlike in the ĈFA case, the only nontrivial multiplications occur when the strands
algebra element we keep track of which α-arcs are not occupied by the generator. We may verify directly
that 𝜕2 = 0: Note that

𝜕2{c} =
(
𝜕
[ 3 1

2
] )

{b} +
(
𝜕
[ 3 2

1
] )

{a} +
[ 3 1

2
]
𝜕{b} +

[ 3 2
1

]
𝜕{a}.

This last term vanishes because 𝜕{a} = 0. The first term vanishes because the strand diagram corre-
sponding to

[ 3 1
2

]
has no crossings. Finally, because

𝜕
[ 3 2

1
]
=

[ 2 3
1 2

]
=

[ 3 1
2

]
·
[ 2 3

1
]
,

it follows that the two middle terms cancel out.
As in the ĈFA case, there is a geometric interpretation of this in terms of ends of an index-two moduli

space. Consider the same moduli space as in Examples 3.55 and 4.17, namelyMB({a}, {c}; {ρ12}, {ρ23}).
Recall that this moduli space has a two-story end and a split curve end. The two-story end corresponds
to the third term in 𝜕2{c}, namely [ 3 1

2
]
𝜕{b} =

[ 3 1
2

]
·
( [ 2 3

1
]
{a}

)
.

Similarly, the split curve end (i.e., collision of levels) corresponds to the second term in 𝜕2{c}, i.e.,
when the curve approaches ρ12 and ρ23 at the same time. In particular, the component

[ 3 2
1

]
{a} of

𝜕{c} corresponds to the projection onto Σ, which approaches the Reeb chord ρ13 at east infinity. The
differential 𝜕

[ 3 2
1

]
in the strands algebra tells us that we have degenerated a split component with west

puncture ρ13 and east punctures ρ12 and ρ23. (Note that, in the diagram, east infinity is at the west, because
we have flipped the diagram around.)

Example 4.38. The type D module of the bordered Heegaard diagram in Figure 4.11 has boundary maps

𝜕{a, d} =
[ 4 2

3
]
{a, c}

𝜕{b, c} =
[

2 4
1

]
{a, c}

𝜕{b, d} =
[ 2 3

1
]
{a, d} +

[ 4 1
3

]
{b, c}.

To show 𝜕2 = 0, it suffices to check that

0 = 𝜕2{b, d} = 𝜕
[ 2 3

1
]
{a, d} +

[ 2 3
1

]
·
( [ 4 2

3
]
{a, c}

)
+ 𝜕

[ 4 1
3

]
{b, c} +

[ 4 1
3

]
·
( [ 2 4

1
]
{a, c}

)
. (4.7)

Note that the first and third term vanish. Thus 𝜕2 = 0 follows from the fact that a(ρ34) and a(ρ12)
commute in the strands algebra, i.e., that[ 2 3

1
] [ 4 2

3
]
=

[ 2 4
1 3

]
=

[ 4 1
3

] [
2 4
1

]
.
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a

b
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Figure 4.11: The local picture for Example 4.38.

We again have a geometric interpretation for this result. Consider the same moduli space as in Exam-
ples 3.56 and 4.18, namely MB({a, c}, {b, d}; ρ12, ρ34). The ends appear when ev34 − ev12 approaches 0
or ∞. But now also consider the moduli space where ev34 < ev12, i.e., MB({a, c}, {b, d}; ρ34, ρ12). This
has a two-story end when ev12 − ev34 → ∞, as well as a collision of levels end when ev12 − ev34 → 0. The
total number of ends of these two moduli spaces should certainly be even. The two collisions of levels
cancel each other out, since they are identical curves. In particular, they both have asymptotics {ρ12, ρ34}
occurring at the same time. The two-story ends, on the other hand, occur as the first and third terms in
Equation (4.7).

3

2

1 a

b

c

d

e

Figure 4.12: The local picture for Example 4.39.

Example 4.39. Finally, consider the bordered Heegaard diagram in Figure 4.12. We have the nontrivial
differentials

𝜕{b, c} = {a, d}
𝜕{b, e} =

[
2
1
]
{a, e} +

[ 3
1
]
{b, c}

𝜕{a, e} =
[ 3

2
]
{a, d}.

Since the algebra elements
[

2
1
]

and
[ 3

1
]

are closed in the strands algebra (i.e., the boundary operator takes
them to zero), we know that

𝜕2{b, e} =
[

2
1
]
𝜕{a, e} +

[ 3
1
]
𝜕{b, c} =

[
2
1
]
·
( [ 3

2
]
{a, d}

)
+

[ 3
1
]
{a, d} = 0

since
[

2
1
] [ 3

2
]
=

[ 3
1
]

.
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Geometrically, this again corresponds to counting the ends of two different moduli spaces. The first is
the moduli space from Examples 3.57 and 4.19, namely the one connecting {b, e} to {a, d} via the Reeb
chord ρ13. The second has east asymptotics given by (ρ12, ρ23). It is parameterized by the difference in
evaluations ev23 − ev12, and has a collision end and a two-story end. (Note that, this time, we do not have
a moduli space with east asymptotics given by (ρ23, ρ12), since the resulting pair is not strongly boundary
monotone.) The join curve end of the first family is the same as the collision end of the second family, as
they both have asymptotics {ρ12, ρ23}. In particular, they both approach the Reeb chords ρ12 and ρ23 at
the same time. The two-story end of the first family corresponds to

[ 3
1
]
{a, d}, since the first story is the

provincial rectangle with corners abcd, while the second story is the rectangle 13ec. Finally, the two-story
end of the second family corresponds to

[
2
1
]
·
( [ 3

2
]
{a, d}

)
, with stories projecting to the rectangles 12ba

and 23ed.

Example 4.40. LetH be the Heegaard diagram for the genus-1 handlebody with a single generator x0, as
in Figure 4.13. As before, there is only one region which does not cross the basepoint z. There is a unique

1

2

3

4
z

=x0
1

2
3

4

x0

z

Figure 4.13: The genus-1 handlebody (again).

element ofMB(x0, x0; ρ23, ρ12); this is the same as the element which is counted inm3(x0, ρ23, ρ12) in the
ĈFA case. The associated algebra element is

a(ρ32)a(ρ21) =
[ 3

1
]

Note that the Reeb chords ρ32 and ρ21 are reversed since the type D module is a module over the strands
algebra associated toZ = −𝜕H. Recall that there are also holomorphic curves connecting x0 to itself with
east asymptotics given by ρ⃗ = (ρ23, ρ13, . . . , ρ13, ρ12). But the associated algebra element a(−⃗ρ) vanishes
because the Reeb chords do not compose. (In fact, this issue arises because H is not admissible.) Thus
we conclude that ĈFD(H) is generated by x0 with differential

𝜕x0 =
[ 3

1
]
x0.

The associated type D structure is the map δ1 on the F2-vector space X (H) generated by 𝔖(H) = {x0}
which is defined by

δ
1(x0) = 𝜕x0 =

[ 3
1
]
x0.

This map is not bounded since
δ

2(x0) =
[ 3

1
]
⊗

[ 3
1
]
⊗ x0,

and so on for higher iterates δi. Notice, after all, that Lemma 4.34 only guarantees that δ1 is bounded if
the bordered Heegaard diagram is admissible.
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Figure 4.14: The deformed genus 1 handlebody (again).

Example 4.41. Consider the admissible diagram in Figure 4.14. (Note that the previous example was
only a provincially admissible diagram.) There are no curves which connect w at t = −∞ to another
generator, so 𝜕w = 0. The only curve which limits at t = −∞ to x is the one in MB(x, w; ρ23), and so
𝜕x =

[ 3
2
]
w. Note that we have one provincial domain connecting y tow, as well as a domain connecting

y to w via the Reeb chord ρ13. Finally, the moduli space MB(y, x; ρ12) has one element. Putting this
together, we have

𝜕w = 0
𝜕x =

[ 3
2
]
w

𝜕y = w +
[ 3

1
]
w +

[
2
1
]
x.

This time around, the map δ1 which takes a generator to its differential is bounded. After all, we have

δ
2
x =

[ 3
2
]
𝜕w = 0.

Similarly, we have δ3
y = 0, and so all higher iterates δi for i ≥ 3 must vanish.

Based on these examples, we see that, unlike in the compatibility equation for the type A module,
showing that 𝜕2 = 0 for the type D module often requires that we count ends of multiple moduli spaces.
Furthermore, these ends sometimes cancel with each other. Because of this, the proof of Theorem 4.36
is somewhat more complicated than that of Theorem 4.16. However, the basic idea of counting ends of
the compactified moduli spaces remains the same.

Proof of Theorem 4.36. Recall that it is enough to prove Equation (4.6) where ax,y =
∑
B∈π2 (x,y)aBx,y . Fix-

ing a homology class B ∈ π2(x, y), then, it is enough to show that

𝜕aBx,y +
∑︁

w∈𝔖(H)
B1∗B2=B

a
B1
x,wa

B2
w,y = 0.

Let a be an algebra element, and let ρ⃗ range over all vectors with a(⃗ρ). Then the total number of two-
story ends ofMB(x, y; ρ⃗), summed over all choices of ρ⃗, is equal to the coefficient of a in the second term∑
a
B1
x,wa

B2
w,y above. One may also show (though this takes a little more work) that the coefficient of a in

𝜕aBx,y is given by the total number of split curve ends. Note, however, that collisions of levels which do
not result in a split curve end, i.e., elements of

MB(x, y; ρ1, . . . , ρi−1, {ρi, ρi+1}, ρi+2, . . . , ρn)
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with ρ+
i
≠ ρ

−
i+1, are not counted in this sum.

Thus it remains to show that the total contribution from join curve ends, shuffle curve ends, and
collisions of levels which are not split curve ends is zero. Note first that shuffle curve ends do not exist
since the partition ρ⃗ is discrete. One can determine that the only collisions of levels which may appear are
the following:

• ρ
−
i
= ρ

+
i+1: In this case, these moduli spaces are exactly the ones which also degenerate off join curve

ends via the factorization a(−ρ1) . . . a(−(ρi ⊎ ρi+1)) . . . a(−ρn) of a. Thus collision ends coming
from this case cancel with join curve ends.

• {M (ρ−
i
),M (ρ+

i
)} ∩M (ρ−

i+1),M (ρ+
i+1) = ∅ and the chords ρi and ρi+1 are either nested (in either

order) or disjoint: There is then another factorization of a given by swapping the order of the
a(−ρi) and a(−ρi+1) factors, so this case contains collision ends which appear in pairs. Thus this
case cancels with itself.

We conclude that there is no contribution from other moduli space ends, and so Theorem 3.53 implies
the equation 𝜕2 = 0, as desired. □

4.5.3 Invariance

We thus far have a differential module (ĈFD(H), 𝜕) associated to a bordered Heegaard diagram. As seen
in Examples 4.40 and 4.41, two ĈFDmodules of bordered Heegaard diagrams which represent the same
3-manifold are not necessarily isomorphic as differential modules. But, as in the type A case, the two type
D modules are homotopy equivalent. In particular, we have the following statement.

Theorem 4.42. Let H be a bordered Heegaard diagram and let Z = −𝜕H. The differential module

ĈFD(H) is independent, up to homotopy equivalence of differential A(Z)-modules, of the choice of ad-

missible, transversality-achieving almost complex structure on Σ × [0, 1] × R. Furthermore, if H and H′

are provincially admissible bordered Heegaard diagrams for the same bordered 3-manifold (Y,−Z , ϕ :
−F (Z) → 𝜕Y ), then ĈFD(H) and ĈFD(H′) are homotopy equivalent.

As in the case for the type A module, the proof is somewhat technical, but somewhat less related
to our discussion of moduli spaces. To show invariance under isotopies and choice of almost complex
structure, one uses something called a “continuation map,” as in [Flo89a]. Invariance under Heegaard
moves, particularly a handleslide of an α-arc over an α-circle, requires the definition of a new “moduli
space of triangles.” See [LOT18, Section 6.3] for a detailed proof.

We give one example of invariance.

Example 4.43. As usual, let H and H′ denote the bordered Heegaard diagrams from Examples 4.40
and 4.41, respectively. Again, these differ only by an isotopy, so we would expect a homotopy equivalence
between their type D modules.

Constructing this homotopy equivalence is easier than constructing a homotopy equivalence be-
tween their type A modules (cf. Example 4.25), since we no longer have higher multiplications to worry
about. Consider the map

f : ĈFD(H) → ĈFD(H′)
x0 ↦→ x +

[ 3
2
]
y +

[ 3
2
]
w.
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This is a chain map because

f (𝜕x0) =
[ 3

1
]
x = 𝜕

(
x +

[ 3
2
]
y +

[ 3
2
]
w
)
= 𝜕f (x0).

On the other hand, define

g : ĈFD(H′) → ĈFD(H)
x ↦→ x0

y ↦→
[

2
1
]
x0

w ↦→
[

2
1
]
x0.

It is not too hard to verify that this is also a chain map. The most interesting case is

g(𝜕x) = g
( [ 3

2
]
w
)
=

[ 3
1
]
x0 = 𝜕x0 = 𝜕g(x).

Clearly g ◦ f is the identity on ĈFD(H). It is not too hard to construct a homotopy equivalence
between f ◦ g and the identity map on ĈFD(H′) either. Indeed, the chain homotopy defined by

x ↦→
[ 3

1
]
x +

[ 3
2
]
y +

[ 3
2
]
w

y ↦→
[

2
1
]
x + w

w ↦→
[

2
1
]
x + y

works.
It follows, then, that ĈFD(H) ≃ ĈFD(H′), as desired.

4.6 The pairing theorem
Notice that slicing a closed 3-manifold Y along a separating surface gives a decomposition Y = Y1 ∪𝜕 Y2
into two bordered manifolds. We might wonder whether there is a relationship between ĤF (Y ) and the
bordered Heegaard Floer invariants ofY1 andY2. In fact, bordered Heegaard Floer homology gives a way
to compute ĤF (Y ), thanks to the following pairing theorem.

Theorem 4.44. Let Y1 and Y2 be bordered 3-manifolds with 𝜕Y1 = F (Z) = −𝜕Y2 for some pointed

matched circle Z . If Y is the closed 3-manifold obtained by gluing Y1 and Y2 together along F (Z), then

ĈF (Y ) is homotopy equivalent to ĈFA(Y1)⊗̃ĈFD(Y2), where ⊗̃ denotes the A∞ tensor product. In par-

ticular, we have the following relationship between the Heegaard Floer homology of Y and the bordered

invariants of Y1 and Y2:

ĤF (Y ) � H∗
(
ĈFA(Y1)⊗̃ĈFD(Y2)

)
.

The first step is to note that, in the setup of the pairing theorem, gluing Y1 and Y2 into the closed
manifold Y is equivalent to gluing their respective bordered Heegaard diagrams. In particular, suppose
H1 = (Σ1, ααα1, βββ1, z) and H2 = (Σ2, ααα2, βββ2, z) are bordered Heegaard diagrams for Y1 and Y2, respectively,
with 𝜕H1 = Z = −𝜕H2. Let Σ = Σ1 ∪𝜕 Σ2, and similarly for ααα and βββ. Then H = (Σ, ααα, βββ, z) is a closed
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Figure 4.15: Gluing along the shared boundary makes it clear that gluing bordered Heegaard di-
agrams is the same as gluing the corresponding bordered 3-manifolds.

Heegaard diagram for Y , which we may write as H = H1 ∪𝜕 H2. Recalling the Morse theoretic descrip-
tion of a (bordered) manifold from its (bordered) Heegaard diagram in Section 2.3, this intuitively looks
like Figure 4.15. (Similarly, cutting a closed Heegaard diagram at some separating circle Z corresponds
to cutting a closed 3-manifold at the surface F (Z).)

There is a relationship between the generators of these diagrams. Suppose x1 ∈ 𝔖(H1) and x2 ∈
𝔖(H2). If o(x1) ∩ o(x2) = ∅, so that x1 ∪ x2 is a generator of H, then we call (x1, x2) a compatible
pair. Let𝔖(H1,H2) ⊂ 𝔖(H1)×𝔖(H2) be the set of compatible pairs of generators. There is a bijection
between𝔖(H1,H2) and𝔖(H). Furthermore, if x1×x2 and y1×y2 are both compatible pairs, then there
is a natural identification of π2(x1 ∪ x2, y1 ∪ y2) with the subset of π2(x1, y1) × π2(x2, y2) consisting of
pairs (B1, B2) with 𝜕𝜕B1 + 𝜕𝜕B2 = 0, i.e., with B1 and B2 “matching” at their shared boundary. Finally,
it is not difficult to show that, if H1 is admissible and H2 is provincially admissible, then H is admissible
as a closed Heegaard diagram. As such, let H1 be admissible and H2 provincially admissible, so that we
may use H to compute the Heegaard Floer homology of Y .

Recall now that the Heegaard Floer homology of H = (Σ, ααα, βββ, z) counts holomorphic curves in
Σ × [0, 1] × R which connect generators. In theory, we can cut such a holomorphic curve at 𝜕Σi ⊂ Σ.
(From the perspective of the complex structure on Σ, rather than simply cutting at the circle Z, one
actually stretches the neck connecting Σ1 to Σ2, thus creating a pair of infinite cylindrical ends at east
infinity for both Σ1 and Σ2. This setup is reminiscent of proofs of some of the product theorems in
gauge theory, as in [Don02, KM07]) Thus we may consider a holomorphic curve in Σ × [0, 1] × R as
two maps, one onto Σ1 × [0, 1] × R and the other onto Σ2 × [0, 1] × R. The restriction to Σi connects
generators xi and yi of Hi. In particular, if B ∈ π2(x1 ∪ x2, y1 ∪ y2) may be written B1 ∗ B2, where Bi is
the projection in π2(xi, yi), then there is a map

MB(x1 ∪ x2, y1 ∪ y2; S) → MB1 (x1, y1; S▷1 ) ×MB2 (x2, y2; S▷2 )

where S▷1 and S▷2 are compatible decorated sources which glue to S. More precisely, compatibility means
that there is a bijection φ : E(S▷1 ) → E(S▷2 ) such that the Reeb chords which label qi and φ(qi) are
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orientation-reverses for each puncture qi ∈ E(S▷1 ). That they glue to S simply means that we may obtain
S by gluing S▷1 to S▷2 along identified neighborhoods of corresponding punctures. (In other words, S is
the preglued surface obtained from S

▷
1 and S▷2 .) In this case, we write S = S

▷
1 ♮S

▷
2 .

Of course, two holomorphic curves u1 ∈ MB1 (x1, y1; S▷1 ) and u2 ∈ MB2 (x2, y2; S▷2 ) only glue
together if the ev(u1) = ev(u2) under the correspondence defined by φ. In particular, for the curves to
glue together, their corresponding east punctures must converge to the Reeb chords at the same time.
As such, we may expect some relationship between the moduli space MB(x1 ∪ x2, y1 ∪ y2; S) and the
moduli space of matched pairs, i.e., the pullback

�MM
B

(x1, y1; S▷1 ; x2, y2; S▷2 ) ≔ M̃B1 (x1, y1; S▷1 ) ×ev1=ev2 M̃B2 (x2, y2; S▷2 ).

There is, as usual, an R-action on the moduli space of matched pairs which is free unless both sides of
the matching are trivial strips. The action here involves simultaneous translation of both curves along
the t-direction. We may drop the tilde to indicate the quotient of �MM by this translation action. It
turns out, by arguments similar to those in Chapter 3, that MM is a manifold with dimension given by
a certain index formula.

Now we restrict, as with the moduli spaces in Chapter 3, to embedded curves. As usual, the condi-
tion that the curves are embedded is equivalent to a numerical condition on the Euler characteristic. In
particular, let �MM

B

(x1, y1; x2, y2) be the union over all compatible decorated surfaces S▷1 and S▷2 with
χ (S▷1 ♮S▷2 ) = χemb(B), where χemb(B) is as defined at the end of Section 3.2. Assuming B ≠ 0, so that the
R-action is free, define the corresponding quotient to be MMB(x1, y1; x2; y2).

If ind(B, S) = 1, then it turns out that the number of elements inMB(x, y; S) is equal (modulo 2) to
the number of elements in

⋃
MMB(x1, y1, S

▷
1 ; x2, y2, S

▷
2 ). The union here is taken over all S = S

▷
1 ♮S

▷
2 ,

x = x1 ∪x2, and y = y1 ∪ y2. The details of the proof of this statement are reminiscent of our arguments
in the previous chapter.

Thus we have the following proposition, which tells us that this moduli space of matched pairs, which
is defined by looking at the bordered Heegaard diagramsH1 andH2, gives an equivalent characterization
for the Heegaard Floer homology of H.

Proposition 4.45. Let ĈF (H1,H2) be generated as anF2-vector space by the set𝔖(H1,H2) of compatible

pairs of generators. Furthermore, define the map 𝜕 on ĈF (H1,H2) by

𝜕 (x1 × x2) ≔
∑︁

y1×y2∈𝔖(H1,H2)

∑︁
B∈π2 (x,y)
ind(B)=1

#
(
MMB(x1, y1; x2, y2)

)
· (y1 × y2).

Then 𝜕 is a differential. Furthermore, for a generic choice of almost complex structure, the chain complex

ĈF (H1,H2) is isomorphic to the Heegaard Floer chain complex ĈF (H) = ĈF (H1 ∪𝜕 H2).

Note that the sum defining 𝜕 (x1, x2) is finite since H is admissible, thanks to an argument similar to
Lemma 4.14. (Recall that we assumed H1 was admissible and H2 was provincially admissible specifically
so that H would be admissible.) Note that the counts in the differentials are exactly the same, modulo 2.

The main issue with this proposition is that the moduli space of matched pairs is a fiber product,
which cannot be easily translated into the language ofA∞ modules, and thus does not fit with our existing
algebraic framework. A workaround is to instead introduce a “time-dilated” version of the matching
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between MB1 (x1, y1) and MB2 (x2, y2). In particular, define the moduli space of T -matched pairs to
be �MM

B

(T ; x1, y1; S▷1 ; x2, y2; S▷2 ) ≔ M̃B1 (x1, y1; S▷1 ) ×T ·ev1=ev2 M̃B2 (x2, y2; S▷2 ).
In particular, we ask that the t-coordinates for u1 at the punctures of S▷1 match with those of u2 at the
punctures of S▷2 , up to a factor ofT . This still has anR-action, though we should translate u1 byT · t and
u2 by t. We call the quotient by this action MMB(T ; x1, y1; S▷1 ; x2, y2; S▷2 ). We have embedded moduli
spaces as well, which we denote

MMB(T ; x1, y1; x2, y2) = �MM
B

(T ; x1, y1; x2, y2)/R.

We may define ĈF (T ;H1,H2) to be the chain complex which is generated by 𝔖(H1,H2) and has differ-
ential 𝜕T given by counting elements of this moduli space, i.e.,

𝜕T (x1 × x2) ≔
∑︁

y1×y2∈𝔖(H1,H2)

∑︁
B∈π2 (x,y)
ind(B)=1

#
(
MMB(T ; x1, y1; x2, y2)

)
· (y1 × y2).

Showing that 𝜕T is a differential requires that we extend our definition of holomorphic combs to so-
called “T -matched combs.” These are combs such that, at each story (u1, v1, . . . , vk, u2), the two eastmost
components vk and u2 are T -matched, in the sense that T · eve(vk) = evw(u2).

Proposition 4.46. For any T ∈ (0,∞), the chain complex ĈF (T ;H1,H2) is chain homotopy equivalent

to ĈF (1;H1,H2) = ĈF (H1,H2), and hence to ĈF (H).

As T grows larger, the moduli space in the differential 𝜕T of ĈF (T ;H1,H2) counts matched pairs
where the left side (which will correspond to the ĈFA side in the pairing theorem) converges to Reeb
chords on a smaller and smaller interval of R, as seen from the perspective of the right side (which will
correspond to the ĈFD side in the pairing theorem). That is, in the limit, Reeb chords begin to collide
on the left side, while Reeb chords grow infinitely far apart on the right side.

One way to encode this is via simple ideal-matched combs. In particular, consider a simple holomor-
phic combU1 forH1 (i.e.,U1 has at most one story) and a toothless holomorphic combU2 forH2 (i.e.,U2
has no components at east infinity). Then a simple ideal-matched comb may be obtained by allowing
each story in U2 to occur at a single time t in U1. In other words, if φ : E(U2) → E(U1) is the cor-
respondence between punctures (hence between Reeb chords), and if p and q are two punctures on the
same story of U2, then the t-coordinates of φ(p) and φ(q) are the same. See Figure 4.16 for a schematic
representation of this.
Remark 4.47. Technically, there are some more conditions which are needed to define simple ideal-
matched combs (see [LOT18, Definition 9.28]), but the details are not too important for us, so we omit
them here.

It turns out thatT -matched curves converge to simple ideal-matched curves. If we “trim at east infin-
ity,” then the resulting moduli space of trimmed simple ideal-matched curves has exactly the same counts
as MMB(T ; x1, y1; x2, y2) for sufficiently large T . In particular, the moduli space in the definition of
𝜕T may be replaced by the moduli space MMB

tsic(x1, y1; x2, y2) of these trimmed simple ideal-matched
curves.
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ρ1

ρ2

ρ1 ⊎ ρ2

ρ1ρ1
ρ2

ρ3

Figure 4.16: The one-story comb on the left is U1, and is allowed to have components at east
infinity. The three-story comb on the right is U2, and has no components at east infinity. Each
story of U2 is mapped to a single point on the vertical line in the middle, i.e., to a single time t.

Algebraically, what this corresponds to is the following. Recall that we have a map δ1
X (H2) : X (H2) →

ĈFD(H2) which is defined by sending a generator x2 ∈ 𝔖(H2) to 𝜕 (I ⊗ x2). Graphically, the elements
which the differential counts (i.e., the trimmed simple ideal-matched curves) correspond to maps of the
form

δ
1

...

δ
1

mn+1

In particular, each story of the right side U2 of a trimmed simple ideal-matched curve corresponds to
taking some repeated differential coming from the type D structure. This outputs an element ofA(Z)n⊗
X (H2), wheren is the height ofU2. Now the holomorphic curveU1 on the left side of the trimmed simple
ideal-matched curve corresponds to the higher multiplication mn+1 of these n elements of A(Z) which
are outputted by the right side, along with the generator x1 ∈ 𝔖(H1).

Summing over all trimmed simple ideal-matched curves, we see that, for large T , the differential 𝜕T
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is given by
𝜕T (x1 × x2) =

∑︁
mn+1(x1, ai1 , . . . , ain) (Din

◦ · · · ◦Di1) (x2).

Here {ai} be basic generators for A(Z), and Di : X (H2) → X (H2) are operators such that

δ
1
X (H2) (x2) =

∑︁
i

ai ⊗ Di (x2).

The sum is taken over all finite sequences (ai1 , . . . , ain) of basic generators of A(Z).
It turns out that there is a model of the A∞ tensor product, namely the box tensor product, which

exactly corresponds to this geometric interpretation. See [LOT18, Section 2.4]. The pairing theorem
follows from this. More details may be found in Chapter 9 of [LOT18].
Remark 4.48. There is a more algebraic proof, using Sarkar and Wang’s nice diagrams [SW10]. Every
Heegaard diagram may be turned into a nice Heegaard diagram, and thus into a diagram whose type
A module is a genuine differential module (cf. Remark 4.23). Then the A∞ tensor product in Theo-
rem 4.44 coincides with the usual tensor product. Assuming all this, the proof for the pairing theorem
becomes quite simple. See [LOT18, Chapter 8] for more.
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