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Abstract

Bordered Heegaard Floer homology is a powerful invariant of bordered 3-manifolds, i.e., 3-manifolds
with a single boundary component that is parameterized by a combinatorial object called a “pointed
matched circle.” It can be used, for example, to compute Heegaard Floer homology by a so-called “pairing
theorem.” Though beyond the scope of this thesis, bordered Heegaard Floer homology also has applica-
tions to knot theory (e.g., to compute the Ozsvath-Szabo spectral sequence between Khovanov homol-
ogy and Heegaard Floer homology, or to give a knot Floer homology of tangles), 4-dimensional topology
(e.g., to show that there are knots in homology 3-balls which do not bound piecewise linear disks in
any homology 4-balls, or to find various examples of exotic phenomena), and contact geometry (e.g., by
proving a pairing theorem for contact invariants, or by showing that there are computable, though not
yet geometrically understood, Aw-style maps on the set of contact structures).

The construction of bordered Heegaard Floer modules @(Y ) and C%(Y ) involves counting
holomorphic curves on X X [0,1] X R, where X is the Heegaard surface of some Heegaard diagram rep-
resenting Y. This is reminiscent of Lipshitz’s cylindrical formulation of Ozsvath and Szab6’s Heegaard
Floer homology, which we also briefly sketch. As in many Floer homologies, we define a moduli space of
such holomorphic curves, and that it is contained in a compact manifold whose dimension is given by
some index formula. We focus particularly on the proof that this moduli space may be compactified, and
prove results from symplectic field theory in doing so. We conclude with the definition of the invariants
@(Y ) and CT}TD(Y ) as a certain count of points in this moduli space and with a proof of the pairing
theorem.

This thesis can be thought of as a supplement to Lipshitz, Ozsvath, and Thurston’s monograph Bor-
dered Heegaard Floer homology, which details the construction and invariance of the bordered Heegaard
Floer modules CEA and CFD. We focus primarily on their geometric and analytic insights, while being
somewhat lighter on the algebra. Instead, whenever possible, we illustrate algebraic results geometrically.
We hope that this thesis will be helpful to anyone trying to learn the details of bordered Heegaard Floer
homology, as well as to anyone trying to understand many of the compactness proofs that appear in in-
variants which arise from counting points in moduli spaces (e.g., Gromov—Witten invariants). While
readers with the latter aim will not find anything specifically geared toward their interests, we hope that
the focus on compactness results will still provide some useful perspective.
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Chapter 1

Introduction

And I feel like this year is really about, like, the year of
realizing stuff. And everyone around me, we’re all just,
like, realizing things.

Kylie Jenner

In the past few decades, there has been an explosion of interest in low-dimensional topology, owing in
part to the discovery of new invariants. A topological invariant is some quantity (e.g., a number, polyno-
mial, or homology group) which does not change under some equivalence, often continuous or smooth
deformation. Thus an invariant helps us classify and distinguish manifolds.

Floer homology is a family of such invariants. Perhaps more accurately, we may call Floer homology
a “technique,” from which many invariants may be created. Loosely speaking, Floer homology is an
infinite-dimensional analogue of Morse homology.

In the Morse case, one considers a Morse function on a manifold A4 and considers the vector space
CM (M) spanned by its critical points. If one equips M with a Riemannian metric, then one can com-
pute the gradient of the Morse function. This gradient flows from higher-index critical points to lower-
index critical points. One can count the number of flowlines 7, , between critical points p and g of index
7 and 7 — 1, respectively. Then we define the differential as

ap = Z np’qq.
ind(g)=ind(p)-1

Then (CM (M), 0) is achain complex, and itshomology HA (M) is an invariant of M, i.e., independent
of the choice of Morse function and Riemannian metric.

Floer homology does the same thing—considers a functional with nondegenerate critical points, de-
fines the chain complex to be freely generated by these critical points, and then counts flowlines to define
the differential—but with a functional that is now defined on an infinite-dimensional space. For example,
the earliest version of Floer homology, due to Andreas Floer, is known as Hamiltonian (or symplectic)
Floer homology and gives an invariant of symplectic manifolds [Flo88a, Flo88c, Flo89a, Flo89b]. It is
defined by doing Morse homology on a function defined on the loop space of the manifold.

Other versions of Floer homology give 3-manifold invariants which are intimately connected to in-
variants coming from mathematical gauge theory, i.e., coming from solutions to partial differential equa-
tions arising in the study of connections on principal bundles. In particular, in the 1980s, Simon Don-
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aldson defined the gauge-theoretic Donaldson invariants, which were invariants of 4-manifolds. (These
are invariants coming from the so-called “anti-self-dual equations.”) Instanton Floer homology gave a
3-manifold version of the Donaldson invariants [Flo88b, DK90]. Subsequently, monopole Floer homol-
ogy (or Seiberg—Witten Floer homology) gave a 3-dimensional analogue of the Seiberg—Witten invariants,
which were similar to but often easier to compute than Donaldson invariants [KMO07].

There is another family of 3-manifold invariants known as Heegaard Floer homology, first discovered
by Peter Ozsvath and Zoltin Szab6 [OS04c, OS04b]. These invariants were conjectured to be isomorphic
to monopole Floer homology, and this equivalence was proved in a series of papers by Cagatay Kutluhan,
Yi-Jen Lee and Clifford Taubes [KLI20]. It is worth noting, furthermore, that monopole and Heegaard
Floer homology are conjecturally isomorphic to instanton Floer homology.) This is an invariant of 3-
manifolds, and may be used to construct a 4-manifold invariant as in [OS06], in contrast to how the
invariants described above began as 4-manifold invariants whose 3-manifold analogues were discovered
later on. (The 4-manifold invariant arising from HF, which is the variant of Heegaard Floer homology
which will be most relevant to this thesis, is not actually an interesting one. Instead, to obtain an inter-
esting 4-manifold invariant, one must use more refined versions of Heegaard Floer homology, denoted
HF* and HF™.)

Informally, the relationship between the 4-dimensional invariants and their 3-dimensional counter-
parts is as follows: The Floer homology associates a graded abelian group to a 3-manifold Y. If ¥ is a
4-manifold with 8 1% = Y, then we associate to it a homology class in the Floer homology of Y. Now if
X is a closed 4-manifold which decomposes as X = Xj Uy X3, then the 4-manifold invariant is a number
coming from the pairing of the homology classes of X; and X5.

In the Heegaard Floer case, which is the one most relevant to this thesis, this looks like the following.
Every closed and oriented smooth 3-manifold Y is assigned an [F,-vector space HF (Y) which is obtained
as the homology of some chain complex. Then a (4-dimensional) cobordism /7 between Y; and Y3 is
associated a linear map Fyy : HF () — HF (Y2). Furthermore, this assignment fits into the framework
of a (3 + 1)-dimensional topological quantum field theory (TQFT) as in [Ati88]. In particular, we have
the following. Let Cob(3) be the category whose objects are closed, oriented, smooth 3-manifolds and
whose morphisms are smooth, oriented, and connected 4-manifold cobordisms. Then HF is a functor
from Cob(3) to the category of F-vector spaces. On objects, this is the map ¥ + HF (Y), while on
morphisms it is the map W +— Fy.

It is natural to ask whether a (3 4+ 1)-TQFT may be extended to a (2 + 1+ 1)-TQFT, i.e., if we can
extend to a map taking 2-manifolds to algebras over F; in such a way that the composition axioms of a
2-category are satisfied. If so, one could recover Heegaard Floer invariants of 3-manifolds with boundary
by considering them to be cobordisms between 2-manifolds.

Bordered Heegaard Floer homology, an invariant due to Robert Lipshitz, Peter Ozsvath, and Dylan
Thurston [LOT18] and the subject of this thesis, is a step in this direction. The 2-manifold invariant it
defines ends up being a differential graded algebra which depends on some extra data, namely a choice
of parameterization, and thus is not a genuine topological invariant. Similarly, bordered Heegaard Floer
homology does extend Heegaard Floer homology to manifolds with one boundary component, but is
only an invariant of so-called “bordered 3-manifolds.” These are manifolds whose boundary component
have been parameterized by a choice of handle decomposition. Furthermore, we may recover Heegaard
Floer homology by decomposing a closed manifold into two manifolds with boundary and computing
the tensor product of their bordered Heegaard Floer invariants.



1.1 The bordered Heegaard Floer package

Consider a closed, oriented 2-manifold F which has been equipped with a certain parameterization. This
parameterization is given by a pointed matched circle Z. One may associate Z to a differential graded
algebra A(Z). This algebra is not itself an invariant of the surface F, but gives rise to bordered Heegaard
Floer homology invariants.

In particular, if Y is a 3-manifold equipped with an orientation-preserving diffeomorphism ¢ : F —
0Y, then one can associate two algebraic objects to Y. (One calls such a manifold (Y, ¢) a bordered 3-
manifold.) The first is the type A module CEA(Y), which is a right A module over A(Z). (An A
module is like a module, but might not satisfy associativity on the nose. Instead, it satisfies associativity
up to a homotopy which is encoded by some higher multiplication 723. This map 73 itself satisfies an
associativity-type requirement only up to homotopy as well, and so on.) The second module associated
to Y is the type D module @( Y), which is a differential graded left A(—Z)-module. This is an on-the-
nose differential module, rather than an A, module. However, it has a further algebraic structure called
atype D structure.

This type D structure gives rise to a pairing result. If Y7 and Y5 are two bordered 3-manifolds with
0Y; = —0Y, then [?Y:(Yl Uy o) = @(H)@@(YZ) (Note that we write ® instead of the typical
tensor product ®. This is because the pairing theorem involves the Ao, tensor productinstead.) In theory,
this gives a more efficient way to compute the Heegaard Floer homology of a closed 3-manifold.

We briefly remark on the construction of the bordered Heegaard Floer invariants CFEA and CED. One
defines them on a Heegaard diagram H representing a bordered 3-manifold Y. This diagram comprises
a surface ¥ with boundary oY = St parameterized by a pointed matched circle Z, along with some
curves and arcs with boundary on AX. These curves and arcs tell us how to attach 2-handles to = to
obtain Y. Both CEA and CFD are generated by g(Z) tuples of intersection points of the curves and
arcs. (In particular, the generators of CEA and CFD are finite subsets of <. ) The multiplication maps
in CEA and the differential in CFD are defined by counting the number of elements in a certain moduli
space of holomorphic curves in > x [0,1] X R. Just as how the differential in Morse homology counted
flowlines between generators (i.e., critical points), the maps in bordered Heegaard Floer homology count
the number of holomorphic curves which connect generators of CFEA and CFD.

While bordered Heegaard Floer homology involves somewhat sophisticated algebraic constructions,
most notably A modules (which are not particularly common in low-dimensional topology, though
they come up quite often in symplectic geometry) and type D structures (which were created expressly
for bordered Heegaard Floer homology), we focus in this thesis on the geometry of the subject instead.
In particular, these holomorphic curves between generators form the geometric heart of bordered Hee-
gaard Floer homology, as well as the technical heart of this thesis. As such, we discuss holomorphic curve
theory—and, even more specifically, compactness results—at some length.

Because of this, beyond the standard undergraduate curriculum, it is useful for a reader to have fa-
miliarity with basic algebraic topology and symplectic geometry. It may also be helpful, though not nec-
essary, for a reader to have seen some pseudoholomorphic curve theory, e.g., some results from [MS12].
It would also be helpful to not be colorblind, particularly not red-blue colorblind (which I have recently
learned does, in fact, exist). I am sorry that this thesis, or at least the figures therein, will not be particularly
readable otherwise.



1.2 Organization

We begin in Chapter 2 by introducing the geometric objects which will be used define our bordered
Heegaard Floer invariants, namely pointed matched circles and Heegaard diagrams. (It turns out that
the definition is independent of the choice of Heegaard diagram which induce the same pointed matched
circle, so that CF4 and CFD are genuine invariants of 3-manifolds with parameterized boundary.) We
will also define the set S(H); its elements will eventually be the generators of our type A and type D
modules.

In Chapter 3, we give a description of the moduli spaces whose curves we will count in the definition
of the maps in CFEA and CFD. We begin by defining these moduli spaces. To prove that CFEA and CFD
have the desired algebraic properties, we need to prove a few compactness and gluing results. We omit
the latter (as is perhaps standard), but spend some time discussing the former. To do so, we bring in ideas
from symplectic field theory.

To emphasize the focus on the geometric aspect of bordered Heegaard Floer homology, we postpone
nearly all the algebra until the very end, in Chapter 4. This is where we define A, modules, as well as
the algebra A(Z) associated to a pointed matched algebra. We then define CFA and CFD, and conclude

with a brief sketch of the pairing theorem, which reconstructs closed Heegaard Floer homology HF from
the type A and type D modules. We focus throughout primarily on examples, and on how the algebraic
features of the type A and type D modules correspond to elements of the moduli spaces discussed in the
previous chapter.

We are obliged at this point to mention that the curious reader would find a more complete treatment
of this subject in the original monograph by Lipshitz, Ozsvath, and Thurston [LOT18]. We do not aim
to replace their exposition, but instead hope to serve as a useful and streamlined supplement, filling in
certain gaps while omitting some details which are less relevant to the actual geometry of the definition.

10



Chapter 2

Heegaard diagrams

We knew hitherto only a superficial image; behold it has
gained depth, it extends into three dimensions, it moves.

Marcel Proust, The Guermantes Way

Heegaard diagrams, first defined by Poul Heegaard in [Hee98], are a way to encode 3-manifolds one
dimension down. They are the essential objects of study in the definition of Heegaard Floer homology.
In particular, Heegaard Floer homology is defined for a Heegaard diagram. (It turns out, of course, to be
an invariant of the 3-manifold represented by the diagram.)

As such, we begin in Section 2.1 by defining Heegaard diagrams for closed 3-manifolds. Bordered
Heegaard Floer homology generalizes Heegaard Floer homology to so-called “bordered 3-manifolds.”
We discuss these objects in Section 2.2. Roughly speaking, bordered manifolds are just manifolds with
one parameterized boundary component. In analogy to Heegaard diagrams, we may define bordered
Heegaard diagrams of a bordered 3-manifold. We do so in Section 2.3. In Section 2.4, we define the gen-
erators of both the Heegaard Floer and bordered Heegaard Floer complexes. We also introduce certain
admissibility conditions which our (bordered) Heegaard diagrams must fulfill in order for them to be
well-suited for defining (bordered) Heegaard Floer homology. In particular, these admissibility require-
ments ensure that certain sums which appear in the definition of the differential remain finite. Finally,
in Section 2.5, we give an informal description of Lipshitz’s cylindrical reformulation of Heegaard Floer
homology [Lip06a]. This introduces the moduli spaces which we will define more rigorously and study

in depth in the following chapter.

2.1 Heegaard diagrams of closed 3-manifolds

A Heegaard diagram H is a way to represent a closed 3-manifold Y via a surface and some collection of
curves. Roughly speaking, these curves tell us how to attach 3-balls to the surface, and hence how to
construct a 3-manifold. More precisely, a Heegaard diagram encodes a so-called “handle decomposition”
of Y; the attached 3-balls are known as “handles.”

More precisely, for 0 < % < #, recall that an z-dimensional 4-handle is a copy of D" = D¥ x D*~*
which is attached to an #-dimensional manifold A4 by some embedding ADf x D" * < M. Thereisa
canonical way to smooth corners, so the resulting object may be considered as an z-dimensional manifold

11



as well. It is homotopically the same as attaching a £-cell; indeed, a k-handle may be thought of as a
“thickened” k-cell. Note that a 0-handle simply looks like an 7-ball, without any attaching map. With
this setup, we call the image of ADF x {0} in AM the attaching sphere.

If we may write A as the union of some handles, glued to each other via attaching maps, then we
say that we have a handle decomposition of 4. Any handle decomposition must have at least one
0-handle, as all other handles must attach to a preexisting manifold. In fact, any closed #-manifold A1
admits a handle decomposition into z-dimensional 4-handles. (The same actually holds for manifolds
with boundary, but we focus for now on the closed case.)

To see this fact, recall that a Morse function on M is a smooth map f : M — R whose critical points
are nondegenerate. Itis a well-known fact that any A4 admits a Morse function. The topology of the sub-
level sets {x : /(%) < ¢} changes by attaching an #z-dimensional #-handle when ¢ passes through a critical
value corresponding to a critical point of index £. Thus a Morse function defines a handle decomposition
for M, as in Figure 2.1. In fact, any M actually admits a se/f-indexing Morse function, i.e., a Morse

2

height

0

Figure 2.1: The height function above is a Morse function, and gives a decomposition of S 1 St
into one 0-handle, two 1-handles, and one 2-handle. Note that this function isn’t self-indexing.

function f such that f(p) = & for any index-£ critical point p of f. This means that we may attach all the
0-handles first, then all the 1-handles at the same time, and so on. Details about handle decompositions
and Morse functions may be found in [GS99, Chapter 4] and [Mil63, Part1].

Now let us restrict our attention to the # = 3 case. Consider a particular handle decomposition of
M. We may require that there is only one 0-handle and one 3-handle. Let U be the union of the 0- and
1-handles, and 7" the union of the 2- and 3-handles. We call U and ¥V “handlebodies.”

In particular, for our purposes, a handlebody is a single 3-ball (i.e., 0-handle) with some number of
I-handles attached. For example, the genus ¢ handlebody is simply the 3-manifold with boundary which
is bounded by the usual genus g surface. With this definition of a handlebody, U is clearly a handlebody.
Turning V" upside down, we see that /" is also composed of a single 0-handle and several 1-handles, hence s
also a handlebody. Thus we may write M = U Uy V, where X is the closed surface which is the common
boundary of U and V. Such a decomposition of A1 into two handlebodies is known as a Heegaard
decomposition or a Heegaard splitting.

Let M = U Us V be a Heegaard decomposition. Leta = {aj,..., ag} and B8 = {4,. ..,(gg} be

12



the collections of attaching curves for the 1-handles in U and V, respectively. (Note that these 1-handles
are being attached to X as 2-handles, as their attaching spheres are circles.) These are curves living on
2. Given only X, &, and B, we can recover M by attaching 1-handles to the curves and capping off the
boundary components with 3-balls. With this in mind, we may make the following definition.

Definition 2.1. Consider a triple (%, #, 8) consisting of a compact oriented genus-¢g surface ¥ without
boundary, along with two sets2 and 8 of ¢ many disjoint closed curves. Suppose the surfaces X \e and X\ 8
are both connected. Suppose furthermore that the - and B-curves intersect transversely. Then (Z, 2, 8)
is a (closed) Heegaard diagram. Furthermore, if the closed manifold A1 is obtained from (%, #, 8) as
described above, then we say that (%, 2, 8) is a Heegaard diagram representing 1.

In general, there are many Heegaard decompositions for M/, and many Heegaard diagrams for a given
Heegaard decomposition (X, U, V). For example, we may write S 3 25 the union of two 3-balls. Alterna-
tively, we may write it as the union of two solid tori. After all, we know that $> = dD* = §(D* x D?) =
(8" x D*) U (8! x D*). Geometrically, this splitting is seen in Figure 2.2. The Heegaard diagram of this

Figure 2.2: A Heegaard splitting of > = (S x D*) U (S? X D?). One copy of S* X D? is indicated
by the black torus. The other copy is given by slowly blowing the blue disk up; each “blown-up”

disk intersects the red circle at one point. Thus the colorful region is another copy of S* x D?.

splitting is seen in the right side of Figure 2.3. Another example of a Heegaard diagram, this time for the
3-manifold S' x §2, is (S x D?, B, B), where B refers to the meridian of S 1w D?. This Heegaard diagram
corresponds to the decomposition of ST X §? as (! X D?) U (S! x D?).

Heegaard Floer homology is an invariant of 3-manifolds which is defined through data in a Heegaard
diagram. For this to make sense, we need the following proposition.

Proposition 2.2. Any two Heegaard diagrams for M may be related by a sequence of Heegaard moves,
namely isotopy, handleslides, and (de)stabilizations.
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Figure 2.3: Heegaard diagrams of two splittings of S 3, namely the trivial § 3 = D3 U D3 and the
splitting depicted above in Figure 2.2. In the first case, we have@ = 8 = 0. In the second case, @ is
the red longitude, while 8 is the blue meridian.

The first two Heegaard moves mentioned above relate Heegaard diagrams of the same Heegaard de-
composition, while stabilizations relate Heegaard decompositions with a surface X of genus ¢ to decom-
positions with a surface of genus ¢ + 1. It is not too important for our purposes to know exactly what
these moves are. The point is simply that an invariant of Heegaard diagrams which is preserved by all
three Heegaard moves is also an invariant of 3-manifolds.

We will actually work with pointed Heegaard diagrams to define Heegaard Floer homology.

Definition 2.3. A pointed Heegaard diagram H is a quadruple (%, 2, 4, z) where (%, &, §) is a Hee-
gaard diagram, and z is a pointin X \ (2 U f).

Any two pointed Heegaard diagrams for the same Heegaard decomposition may be connected by
a sequence of pointed Heegaard moves, namely pointed isotopies, pointed handleslides, and (de)stabil-
izations. The first two are simply pointed generalizations of the Heegaard moves in Proposition 2.2. In
particular, pointed isotopies are isotopies which do not cross the basepoint z, and similarly for pointed

handleslides.

2.2 Pointed matched circles and bordered 3-manifolds

Our main object of study will be bordered 3-manifolds. These are 3-manifolds with connected boundary
whose boundary contains some extra information parameterized by a so-called “pointed matched circle.”
This pointed matched circle encodes a handle decomposition of a surface in much the same way as how
a Heegaard diagram encodes a handle decomposition of a 3-manifold.

Consider a closed orientable surface F of genus g. Then it admits a self-indexing Morse function
with one index-0 critical point, 2¢ index-1 critical points, and one index-2 critical point. To specify F, it
is enough to specify how the 2¢ 1-handles attach to the 0-handle. After all, there is then a unique way to
glue the index-2 critical point, namely in such a way that the result has no boundary. But to specify how a
1-handle is attached to a 0-handle D?, it suffices to specify an embedding of S 0 = 9D, into the boundary
of the 0-handle. Thus it suffices to specify 4¢ points on OD* = S' aswell asa “matching” which tells us
which pairs of points belonged to the same 1-handle. Finally, we need the result of attaching 1-handles to
have connected boundary, so that we may glue a single 2-handle to obtain a closed surface.

Thus we make the following definition.
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Definition 2.4. Consider a triple Z = (Z, a, M) comprising an oriented circle Z, aseta = {ay,..., a4}
of 4k points in Z, and a 2-to-1 function M : a — {1,..., 2k} for some £ > 1. We call M/ a matching.
It defines 2k pairs of «,’s. If the 1-dimensional manifold obtained by surgery along each of these pairs,
thought of as a 0-sphere, is connected, then we say that Z is a matched circle. If (Z, a, M) is a matched
circleand z € Z \ a, then we call (Z, a, 4, z) a pointed matched circle.

If F is obtained from Z by gluing 1-handles to the pairs specified by A4, then we write F = F(Z).
Note that, if Z = (Z, a, M) has 4k points in a, then F has genus 2k. Figure 2.4 shows an example and a
non-example of a matched circle.

ar

Figure 2.4: The left side, namely Z = (Z, a, M) with matching M (a;) = M(a3) = 1and
M(az) = M(as) = 2,is a matched circle representing the genus 1 surface. The right side, with
matching M(a1) = M(az) = 1and M(a3) = M(as) = 2, is not a matched circle, since there
is more than one boundary component (i.e., surgery on the pairs (41, 22) and (a3, 24) produces
a disconnected 1-manifold).

Definition 2.5. A bordered 3-manifold is a triple (}; Z, ¢) where Y is a compact oriented 3-manifold
with one boundary component, Z is a pointed matched circle, and ¢ : F(Z) — Y is an orientation-
preserving homeomorphism.

We close this section with a discussion of Reeb chords. These will be important in our definition of
(bordered) Heegaard Floer homology since the differentials will be defined by moduli spaces consisting
of maps which, among other things, converge to tuples of Reeb chords.

Definition 2.6. A Reeb chord pin (Z \ 2, a) is an embedded arc in Z \ z whose endpoints are points
in a and whose orientation is induced by the orientation on Z.

We call these chords “Reeb chords” because we may think of Z as a contact 1-manifold, and the points
aasa Legendrian submanifold. The chords in question are then Reeb chords under the usual definition.
We denote the initial and terminal point of p as p~ and p, respectively. A set of Reeb chords is
consistent if none of the Reeb chords share either an initial point or a terminal point. That is, we call

P=1p1...,pn} consistent if p v and pf ijo;.r forany 7 # ;.
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Consider the points in a to be in increasing order from the basepoint z as we go around Z (respecting
the orientation on Z). Then we call two Reeb chords p and o nested if either p~ < ¢~ < ¢ < p* or
o~ <p” <p' <ot Wecall them interleaved if 7% and p* are swapped, i.e., if either p~ < 07 < p* < o*
oro” <p- <ot <p'. SeeFigure 2.5.

Figure 2.5: The left side shows two nested Reeb chords, while the right side shows two interleaved
Reeb chords. Note that the circles are oriented counterclockwise here.

Finally, we may define an operation on Reeb chords as follows. If p and o are abutting Reeb chords
in the sense that p* = ¢, then their join p ¥ ¢ is the concatenation, i.e., the Reeb chord from p~ to o*.

2.3 Bordered Heegaard diagrams

A bordered Heegaard diagram is analogous to a Heegaard diagram, only for bordered manifolds. In par-
ticular, the main difference between a closed Heegaard diagram and a bordered one is that the surface in
the bordered case has a boundary component, and the 2-curves are allowed to be arcs now. Thus we make
the following definition.

Definition 2.7. A (pointed) bordered Heegaard diagram is a quadruple H = Xz B, z) where
* X is a compact oriented surface with one boundary component and genus g;
*B=1{4,..., [Bg} is a g-tuple of pairwise-disjoint circles in the interior of 3

% _p
circles in the interior and the a’s are arcs with boundary in 0% which are transverse to 0%; and

- ¢ —a —a . . . P - N )
ca={a,..., af,..., k} is a set of ¢ + &£ many pairwise-disjoint curves in X where the 2’s are

* zisapointin AT\ (@N OT),
such thatZ and 8 intersect transversely, X \ Z is connected, and T \ 8 is connected.

An example of a bordered Heegaard diagram for the genus 1 handlebody is depicted in Figure 2.6.
We may obtain a bordered Heegaard diagram for the genus-2 handlebody by taking the boundary con-
nect sum of two copies of the genus-1 diagram, as shown in Figure 2.7. A different bordered Heegaard
diagram for the genus 2 handlebody is shown in Figure 2.8 by picking a different parameterization of
the boundary. In general, a bordered Heegaard diagram without a-circles necessarily represents a genus
¢ handlebody for some g.

Notice that the boundary of a bordered Heegaard diagram may be thought of as a pointed matched
circle. See [LOT18, Lemma 4.4].
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c=|

Figure 2.6: Here# = {2{, 25} consists of the two red arcs and 8 = {1} consists of the single blue
circle. In particular, there are no a-circles «. This is a bordered Heegaard diagram for a genus 1
handlebody. (We may let z be any point of 9% which is not on the red z-arcs.)

e‘- - O—0O| |00
===

Figure 2.7: A bordered Heegaard diagram for the genus-2 handlebody. Here (and later on), we use
circles with numbers to indicate where a 1-handle D! X D? is attached. In particular, we imagine
the plane of this sheet of paper to be the boundary §* = R? U {0} of a 0-handle D?. We actually
lop off half of this 0-handle, since we have a manifold with boundary. The black oval denotes this
boundary circle, so the interior denotes the boundary of this lopped-oft 0-handle. Then attaching
a 1-handle corresponds to embedding D' x D* = D? 11 D? into this oval.
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Figure 2.8: A different bordered Heegaard diagram for the genus 2 handlebody.

Lemma2.8. LaH = (X, B, 2) be a bordered Heegaard diagram. Let Z = 0% anda = aNZ. Consider
the matching M : a — {1,..., 2k} which takes o« N Z toi. Then (Z, a, M, z) is a pointed matched circle.

We denote the pointed matched circle from Lemma 2.8 by 9H, and call it the boundary of H. For
example, if H denotes the bordered Heegaard diagram from Figure 2.6, then we have that 0H is the
pointed matched circle in the first row of Figure 2.4.

A bordered Heegaard diagram gives rise to a bordered 3-manifold much as how a Heegaard diagram
gives rise to a closed 3-manifold, namely by indicating attaching spheres for the 1- and 2-handles. In
particular, consider the thickening > x[0,1] of the Heegaard surface 3. Attach a 3-dimensional 2-handle
to each 2¢ X {0} and to each j; x {1}, and call the resulting manifold Y. Originally, the thickening had
boundary > x {0,1} U 8 x [0,1]. The result of surgering out the S-circles from > x {1} is a disk,
while the result of surgering out the a-circles & from > x {0} is the genus-k surface with one boundary
component. Thus 8Y is exactly a closed genus-# surface.

In fact, there is a canonical identification of Y with F(0H). (Recall that 0H is a pointed matched
circle.) After all, F(0H) is formed by a disk with boundary 9%, 1-handles whose attaching spheres are
the endpoints of the a-arcs, and a disk to close up the boundary component. The union of > x {1}
with S-circles surgered out and the annulus A% x [0,1] is a disk in Y with boundary A% x {0}; this is
the 0-handle in F(Z). Considering the a-arcs to be the cores of the 2-dimensional 1-handles which are
attached to the disk to form F(9H), it follows that Y = F(OH).

An example of this is shown in Figure 2.9.

There is another interpretation, which introduces some canceling handles, which allows one to visu-
alize F(Z) alittle more clearly, as opposed to as the union of three pieces (the two layers > x {0} and
¥ x {1}, with appropriate circles surgered out, and the cylinder A% x [0,1]). See Figure 2.10. In some
more detail, the construction is as follows: As before, we consider = x [0, 1]. Consider a collar neighbor-
hood 4; := [~ 0] X Z C X such that {0} x Z is identified with Z = dX. Recall that F(Z) is obtained
by attaching handles to some disk whose boundary is Z. Thus we may consider a tubular neighborhood
Ay = Zx [0,1] € F(Z). Then glue > % [0,1] to [—5 0] x F(Z) with the obvious identification
Ay x [0,1] = [~ 0] X Z X [0, 1] = [~ 0] X A;. Now attach 2-handles to each ; X {1} and & X {0}, as
before. We must cancel handles we added by gluing in [—¢, 0] X F(Z) In particular, each a-arc 27 X {0}
has a “counterpart” in £ ( Z), and so we obtain a circle by taking the union of each such arc with its coun-
terpart. We attach 2-handles along these circles. We finish off by attaching 3-handles (these are the top-
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Figure 2.9: The bordered 3-manifold Y associated to the bordered Heegaard diagram in Fig-
ure 2.6. Its boundary consists of three parts. First, we have the top layer, namely > x {1} with
the -circle surgered out), which is just a copy of D?. Second, we have the cylinder (i.e., annulus)
Z x [0,1]. Finally, we have the bottom layer, which is identified with the surface (Z). Thus
oY = F(2).

J

Figure 2.10: Another way, with some canceling handles, to see the bordered 3-manifold associated
to a bordered Heegaard diagram. The boundary is now a bit easier to see: It is just the genus-1

handlebody on the very right side of the diagram.
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and bottommost black arcs in Figure 2.10). This interpretation will be useful when we discuss the pairing
theorem in Section 4.6.

Just as how there is a Morse theoretic picture for 3-manifolds, so too is there one for bordered 3-
manifolds which shows that every bordered 3-manifold is represented by some bordered Heegaard dia-
gram. To see this, we must introduce some canceling handles. For details, see [LOT18, Lemma 4.9].

Furthermore, we have the following analogue of Proposition 2.2.

Proposition 2.9 ([LOT18, Lemma 4.10]). Any two bordered Heegaard diagrams for a bordered mani-
fold may be related by a sequence of isotopies of a-curves and B-circles not crossing 0%, handleslides of a-curves
over a-circles and B-civcles over B-circles, and (de)stabilizations in the interior of X.

2.4 Generators and admissibility

In this section, we describe the generators of the Heegaard Floer chain complexes associated to a pointed
or bordered Heegaard diagram, and state an important technical condition (“admissibility”) that dia-
grams must satisfy for Heegaard Floer homology to be defined. We start with the closed case before mov-
ing on to the bordered case.

Let H denote the pointed Heegaard diagram (X, &, §, z) representing a closed 3-manifold Y. Say X
has genus g.

Definition 2.10. A generator of H is a g-clementsetx = {xy,..., xg} of points ona N such that each
a-circle contains exactly one x; and similarly for each £-circle.

These points x will be the generators for the chain complex for Heegaard Floer homology.

In later sections, we will be interested in holomorphic curves with codomain X X [0, 1] X R. Lets be
the [0, 1]-coordinate and ¢ the R-coordinate. Then the differential will be obtained by counting curves
with boundary on C, = 2 X {1} x R and Cp = B x {0} X R and with appropriate asymptotics at # = +oo.
In particular, we consider homology classes in /5 (XX [0, 1] XR) Then consider the following definition.

Definition 2.11. Let 75(x, y) denote the set of homology classes in Hp (X X [0,1] X R, C, U C3) which
converge to X and y at # = —oo and # = o9, respectively. We call elements of this set homology classes
connecting x to y.

Another way of thinking about this set is that, if we denote the closure [—oo, 00] of R by R, then

elements of 7 (X, y) are (complex) curves in X X [0,1] X R with boundary in the union of C,, Cg, x X
[0,1] X {—co},and y X [0, 1] X {co}.

Definition 2.12. A region is a component of Z \ (2 UB). Consider the projection of 2 homology class
B € m(x,y) to X. This gives a well-defined element of H(Z, 2 U 8) which is a linear combination
of regions. We call this linear combination the domain of B. The local multiplicity of B at a point
p € 2\ (@ Up) is the coefficient for the region containing p of the domain of B, and is denoted 7,(B).

Since we are only concerned with HF, we only want to consider homology classes whose domain
does not cross z, i.., has local multiplicity 0 at z. Let 72 (x, y) be the classes B in 75 (%, y) such that this
condition is true for the associated domain of B. An element of 7,(x, x) is a periodic class, and its
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domain is called a periodic domain. Finally, we call a homology class B positive if all of the coefficients
in its corresponding domain are nonnegative.

The differential will involve moduli spaces of curves in some fixed homology class B € 7,(x,y). In
particular, we must be able to count these moduli spaces. To ensure this, we must impose the following
admissibility condition.

Definition 2.13. The pointed Heegaard diagram H is (weakly) admissible if every nontrivial periodic
domain D which does not cross z has both positive and negative coefficients.

There is another definition of admissibility, known as strong admissibility, as in [OS04c]. However,

because we only care about AF and not any of the variants, we omit this definition. In particular, “ad-
missibility” always refers to weak admissibility for us.

Proposition 2.14 ([OS04c, Lemma 5.8]). A Heegaard diagram is isotopic to an admissible Heegaard
diagram, and two admissible Heegaard diagrams may be connected by a sequence of Heegaard moves such
that, at every stage, we have an admissible Heegaard diagram.

We now have the following reformulations of admissibility in terms of area forms. Its proof follows
from ideas in linear algebra; see, for example, [OS04c, Lemma 4.12].

Proposition 2.15. 4 pointed Heegaard diagram is admissible if and only if there is an area function A
on X such that A(P) = 0 for every periodic domain P.

The upshot of this is that admissible Heegaard diagrams have finitely many positive homology classes
Bem(xy).

Proposition 2.16. If H is admissible, then for any two generators x andy, there are only finitely many
positive hbomology classes B € T, (X, y).

Proof. Suppose B, B’ € 7, (x, y) are positive homology classes. Then B— B’ is a periodic domain. Letting
A be an area function, as in Proposition 2.15, we have 4(B) = A(B’). But there are only finitely many
positive domain of a given area. O

This will be useful because the moduli space in Section 3.2 of curves in a given homology class B will
be nonempty only if B is positive. The union over homology classes B of the moduli spaces will then be
a finite, hence well-defined, union.

The above definitions all have generalizations to the bordered case. In particular, now let H be the
bordered Heegaard diagram (i @, B, z). In the bordered case, we let (%, &, B, z) be the result of attaching
an infinite cylindrical end AT X [0, ) to 4X. In particular, X is topologically equivalent to the punctured
surface X \ 0, and the 2;’s in @ are either aioral \ Oas.

Definition 2.17. A generator of a bordered Heegaard diagram H is a g-element set x = {xy,..., %} of
points onz N B such that

* cach a-circle contains exactly one x;;
¢ cach B-circle contains exactly one x;; and

* each a-arc contains at most one x;.
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Note that the first two conditions make up the definition for the closed case, as there are no a-arcs in
that case. Again, our chain complexes will be generated by these intersection points x. We denote the set
of all generators by G(H). Furthermore, if X is a generator, then we let o(x) := {7 : x N & # 0} denote
the subset of {1,..., 2k} consisting of those arcs which are occupied by some x;.

In the bordered case, we would like to allow our holomorphic curves to have boundary on Cy =
(0 \ 2) X [0, 1] X R. We remove z because the bordered case is in analogy to HF; thus our curves may
not cross z. Then we may make the following definition.

Definition 2.18. The set of homology classes connecting x and y, denoted 7> (X, y), is the set of
homology classes in /(X X [0,1] xR, C, U C U Cy) which converge toxand y at# = —coand # = oo,
respectively.

In analogy to the above definitions, we may call components of >\ (@U pB) regions. Furthermore, if
B € m(x,y), then its projection to ol gives a linear combination of regions called the domain of B. The
local multiplicity is defined the same way as before.

Because we ask that the boundary of the homology classes (thought of as two-chains) in question
avoids z € A%, we know that the local multiplicity at z is always 0. Thus we need not define 7> (x, y)
in the bordered case, as it is the same as 72(X, y). Now we call elements of 7, (x, x) periodic classes,
and their domains periodic domains. The definition of a positive homology class is the same as before,
namely that the coeflicients in its corresponding domain are all positive.

We now have the following analogous admissibility condition.

Definition 2.19. A bordered Heegaard diagram is admissible if every nontrivial periodic domain has
both positive and negative coefficients.

At times, we will use a slightly weaker admissibility condition. To describe it, we must first define a
kind of domain called “provincial.”

Consider the domain of a class B € 7,(x,y). Its boundary is composed of three pieces, namely the
piece in @, the piece in B, and the piece in dX. Denote the pieces as 0“B, OEB, and 99 B, respectively.
Furthermore, we orient them such that the domain of B has oriented boundary 0*B + 3°B + 07 B. We
may think of 37 B as an element of H, (0%, a), where a consists of the 4k endpoints of the a-arcs. (This is
the same as the set a of points of the pointed matched circle corresponding to the boundary of %)

Definition 2.20. A class B € m,(x,y) is provincial if 9B = 0, i.e., if its domain contains no regions
bordering 0. A bordered Heegaard diagram is provincially admissible if every nontrivial provincial
periodic domain has both positive and negative coefficients.

Note that provincial admissibility is a weaker condition than admissibility, as we have a condition on
provincial periodic domains, rather than on all periodic domains.

We now have analogues to Propositions 2.14 and 2.15, as follows. Their proofs are exactly analogous
to the proofs of those statements.

Proposition 2.21. A bordered Heegaard diagram is isotopic to an admissible (respectively, provincially
admissible) bordered Heegaard diagram. Furthermore, two admissible (vespectively, provincially admis-
sible) bordered Heegaard diagrams may be connected by a sequence of Heegaard moves such that, at every
stage, we have an admissible (respectively, provincially admissible) bordered Heegaard diagram.
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Proposition 2.22. A bordered Heegaard diagram is admissible (vespectively, provincially admissible) if
and only if there is an area form A such that A(P) = 0 for every periodic (respectively, provincial periodic)

domain P.

The point of these admissibility definitions, as well as the area reformulation of admissibility. is to, as
in the closed case, attain some finiteness result. The area reformulation implies the following two results.

Proposition 2.23. Suppose that H is a provincially admissible bordered Heegaard diagram. Let x and y
be two generators. Let b € H\(Z, a), where Z and a are asin Lemma 2.8. Then there are only finitely many
positive B € (X, y) with 9B =h.

Proposition 2.24. Suppose that H is an admissible bordered Heegaard diagram. Let X and 'y be two
generators. Then there are only finitely many positive B € m, (X, y).

Remark 2.25. It is reasonable to ask when 7, (x, y) (o, in the closed case, when 7, (x, y)) is nonempty.
It turns out that this has to do with spin® structures on Y. In particular, each generator x gives rise to a
nonvanishing vector field, hence a spin‘ structure, on Y. (This uses an interpretation of spin‘ structures
due to Turaev [Tur97].) We denote this associated spin‘ structure as $,(x). Then one can show that
m(x,y) # O (or, in the closed case, 75 (x, y) # 0) if and only if 5,(x) = s,(y). There is a similar spin‘
condition for when there is a provincial domain connecting generators x and y.

2.5 Heegaard Floer homology

In this thesis, we will focus on the bordered case. But we will sketch out Lipshitz’s cylindrical refor-
mulation of Heegaard Floer homology for closed 3-manifolds, which will motivate our next chapter on
moduli spaces. From a strictly logical perspective, the following definitions and results would follow from
the technical details in Sections 3.1 to 3.5.

Fix a pointed Heegaard diagram H = (%, &, §, 2) for the (closed) 3-manifold Y. Suppose H is (weakly)
admissible. (Recall that, for our purposes, we always mean weak admissibility when we talk about “ad-
missibility” for closed Heegaard diagrams.)

Define the chain complex CEF(H) to be Fy-vector space which is freely generated by G(#). The
differential will be defined by a count of a suitable moduli space of holomorphic curves. For this to make
sense, we must begin by picking a generic almost complex structure on £ X [0, 1] XR. Now if we have two
generators X, y € S(H), then we will consider certain holomorphic curves in X X [0, 1] X R which limit
to the g-tuples of chords x X [0, 1] atz = —co and y X [0, 1] at# = 0. (The exact conditions will be spelled
out in Section 3.2.) We may define the moduli space M?(x, y) to be the space of all such holomorphic
curves in the homology class B € 7,(x,y). There is a (computable) number ind(B) which is one more
than the expected dimension of the moduli space. We will discuss this more in Proposition 3.13.

The upshot, however, is that we may define a map 9 : CF (H) — CF (H)

=Yy Y #(Mey)y
Y Bem(xy)
ind(B)=1

By Proposition 2.16, we have only finitely many positive homology classes B € 7,(x,y) and which do
not cross the basepoint z. There are only finitely many generators, since there are only finitely many a-
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and f-curves. Finally, it turns out that M?(x, y) is compact when ind(B) = 1, hence is a finite set of
points. Thus #(M?(x, y)) makes sense, and so this sum is well-defined.

To show that 9% = 0 takes a bit of work. It requires that we count the points in index-two moduli
spaces. (This corresponds to counting “broken trajectories” in something like Hamiltonian Floer homol-
ogy, for example.) In particular, the coefficient of y in 0%x is

Yo Y #(MEw) - (MEwy).

W Biem (x,w) Br€mr(W,y)
ind(Bl):l ind(Bz):l

Showing that this is zero involves counting the ends of the index-two (i.e., one-dimensional) moduli
spaces which connect x and y. Roughly speaking, because this moduli space may be compactified into
a one-dimensional compact manifold, it has an even number of ends. (The only compact 1-manifolds
are S* and [0, 1], both of which have an even number of ends.) Thus the above sum is zero (modulo 2),
which shows that 8% = 0.

What we have just shown, then, is the following lemma.

Lemma 2.26. The vector space (CE(H), 8) is a chain complex, i.e., 0* = 0.

This is not an invariant of the 3-manifold ¥ which is represented by the Heegaard diagram H. How-
ever, its homology is.

Theorem 2.27. The homology HF (H) of H. (5]3 (H), 0) is an invariant of the 3-manifold Y which is
represented by the Heegaard diagram H. We denote this invariant, called the Heegaard Floer homology

of Y, by HF(Y).

Showing invariance requires not only invariance of the choice of Heegaard diagram, i.e., invariance
under the pointed Heegaard moves of Proposition 2.9, but also invariance of the choice of almost com-
plex structure.

Remark 2.28. Variants of this definition may be obtained by allowing our holomorphic curves to cross
z. This leads to versions such as HF*, HF~, and HF*. See Section 8 of [Lip06a]. Furthermore, we may
impose coherent orientations on the moduli spaces so as to get a theory in Z-coefficients, as in Section 6
of the same article. Since the bordered theory deals primarily with the hat-version with coefficients in F,
however, we do not present the other variants here.

There is also a version which may be applied to knots sitting inside 3-manifolds, known as knot Floer
homology. This was first done by Ozsvath and Szabd in [OS04a] and, independently, by Rasmussen
in [Ras03]. This is done by equipping the Heegaard diagram with two basepoints. Recall the Morse
theory description of Y from H, which has one index-0 critical point and one index-3 critical point. By
considering the two flowlines from the index-3 critical point to the two basepoints, and then the two
flowlines from the two basepoints to the index-0 critical point, we obtain a knot. (Of course, choosing
2k basepoints allows us to obtain a k-component link.) Then a suitable generalization of Heegaard Floer

homology recovers the knot invariant HFK (K).

Remark 2.29. As mentioned, the definition of Heegaard Floer homology which we present here follows
Lipshitz’s presentation in [Lip06a]. The original construction, by Ozsvath and Szabo, involved intersec-
tions of the two tori T,, := a1 X - -+ X @z and T := ; X - - - X j, in the symmetric product Sym¢ ().
They counted holomorphic disks with boundary on these tori and which connect intersection points,
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i.e., elements of T, N Tp. See [OS04c, OS04b]. Since they used holomorphic disks rather than strips, the
notion of “connecting generators” is a simpler one; here, it simply means that #(+7) are both elements
of T, N Tg, where # is a holomorphic disk with domain {|z| < 1} C C. This comes at the expense of

having to consider the g-fold symmetric product of %, which is a rather more complicated object than
2 x[0,1] xR,
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Chapter 3

Moduli spaces

The height, in feet, and the number of stories of a
building shall be determined based on the type of
construction, occupancy classification, and whether
there is an automatic sprinkler system installed

throughout the building.
2021 International Building Code, Section 504.1

This chapter contains all the technical results needed to properly define Heegaard Floer homology
in both the closed and the bordered case. In particular, the maps are defined by counting certain holo-
morphic curves with image in £ X [0, 1] X R. As in many Floer contexts, we want to construct smooth,
compact manifolds of dimension 0 and 1 (cf. [Flo88c], [AD14], and [Parl6], for example). The former
is a finite set of points, and thus may be counted in the definition of a map 4 in the Floer complex. The
endpoints of the latter correspond to terms in 9*. Compactness implies an even (i.e., 0 mod 2) number
of ends, so that 82 vanishes. Recall Section 2.5.

In general, the argument in that section, and this general Floer argument, is conducted with the fol-
lowing preliminary setup: First, we define a moduli space of certain kinds of holomorphic curves which
connect generators of the Floer complex (in this case, these are generators of the Heegaard diagram). We
show that this moduli space is generically a manifold by a transversality result. We also compute its ex-
pected dimension via an index formula. By allow some kind of “degeneration” or “broken trajectories,”
we can then compactify this moduli space. Finally, a gluing result implies that this compactification is
also a smooth manifold.

We begin this chapter by discussing the moduli space of Riemann surfaces in Section 3.1. In Sec-
tion 3.2, we then formally define the moduli space whose curves were counted in the definition of HF.
This moduli space M comprises holomorphic curves in 17 with boundary on C,U Cp = (@Xx {1} xR) U
(Bx {0} xR) which “connect” generators of the Heegaard diagram. In this section, we also briefly discuss
transversality and index results. We spend more time discussing compactification, however, which uses
ideas from symplectic field theory. In Section 3.3, we define holomorphic buildings, which roughly cor-
respond to broken trajectories in other Floer theories. Afterwards, we prove compactness of the moduli
space of holomorphic buildings in Section 3.4. Finally, by restricting which holomorphic buildings are
actually allowed to appear as limits of elements of M in Section 3.5, we will show that M is a smooth
manifold which is the interior of a compact manifold.
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In Sections 3.6 to 3.9, we repeat this construction for the bordered case, beginning by defining the
moduli space in Section 3.6. Compactness requires a generalization of holomorphic buildings, known
as holomorphic combs, which we introduce in Section 3.7. We show that the moduli space of holomor-
phic combs is compact in Section 3.8. The compactification does not, unfortunately, produce a honest
manifold. However, we can ensure that we will have an even number of ends in the 1-dimensional case, as
in Theorem 3.53, which is sufficient for defining the bordered Heegaard Floer invariants. We conclude
with Section 3.9.1, in which we provide some examples of degenerations, which will be useful to keep in

mind later on in Chapter 4 when we define the bordered invariants CFA (Y) and Cﬁ( Y).

3.1 The Deligne-Mumford moduli space

Our eventual goal is to define and count the points in certain moduli spaces of holomorphic curves. This
will allow us to define the differentials of our Floer complexes. But counting points requires that we may
compactify these moduli spaces of curves. This involves understanding all possible degenerations which
may occur when taking the limit of some sequence of curves in the moduli space. One possible family of
degenerations arises by degenerating the domain of these curves. Thus we begin by briefly discussing the
compactification of the moduli space of Riemann surfaces.

For our purposes, we allow our Riemann surfaces to have boundary. Furthermore, we allow for punc-
tures and other marked points. Let Z be the set of punctures and A1 the set of non-puncture marked
points. When convenient, we write S for S U Z. Furthermore, when we want to emphasize that we are
considering the punctured surface S, we sometimes write S.

We ask that our Riemann surfaces also have the following property which guarantees that they have
a finite automorphism group.

Definition 3.1. We say that a Riemann surface is stable if
20+u+b>3

on each component C, where g is the genus of C, ¢ is the number of points in (ZUAL) N C,and bis the
number of components in §C.

For instance, a sphere with three marked points is stable since M&bius transformations are specified
by three points.

Let M, ; denote the moduli space of compact connected stable Riemann surfaces with genus g,
points in Z U M, and b boundary components.

Roughly speaking, the compactification of this moduli space is given by allowing nodes to form. A
nodal Riemann surface is just a smooth Riemann surface with specified double points. More formally,
we make the following definition.

Definition 3.2. A nodal Riemann surface is a smooth Riemann surface (S, 7) equipped with an un-
ordered set D of unordered pairs {{d{, d|'},..., {d}, d, }} such that, for each 7, the points d and d; are
either both in the interior or both on the boundary of S. Equivalently, we may think of a nodal Riemann
surface as the associated singular surface S/{d} ~ d}. The identified points d} ~ d are called nodes.

To be completely precise, then, we may specify a nodal Riemann surface as (S, M, Z, D, j). We will
almost never do so, however.
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The uniformization theorem implies that we may give any stable Riemann surface S a unique com-
plete hyperbolic metric 1’ of finite volume which is in the same conformal class as the almost complex
structure j on S. We call this metric the Poincaré metric. This detail helps us navigate the later proofs of
compactness, where we distinguish between “thick” and “thin” parts of §. We will not always be partic-
ularly explicit about it, but when needed we will always assume our Riemann surface comes equipped
with the Poincaré metric. For now, we note simply that punctures correspond to cusps (or, in the case of
boundary punctures, half-cusps) under 4°.

Note that nodes may be either in the interior or on the boundary. They occur when the complex
structures 7, of a sequence (S,,7,) — (S,) collapses at a geodesic circle or arc with boundary on 45,,.
The length of a collapsed geodesics goes to zero. Equivalently, the complex structures form infinitely long
necks at these geodesics. See, for example, Figures 3.1 and 3.2.

-
s — (GO

Figure 3.1: Collapsing along a circle. On the top left, we have (S}, 1). The top right shows (S,, 7,)
for some 7. The geodesic circle has shrunk in length. In the limit (bottom right), the geodesic arc
collapses to a point. The bottom left figure gives an interpretation of this nodal surface as a sphere

with a double pointd* ~ d~.

We denote the moduli space of compact connected stable Riemann surfaces with genus g, ¢ punc-
tures/marked points, and & boundary components by ﬂgyﬂ,b. This notation is justified by the Deligne-
Mumford compactness theorem (Theorem 3.5) below.

Before discussing the compactness theorem below, however, we introduce a few notions. The com-
pactification S of a punctured Riemann surface S is obtained by taking the oriented blow-up at the punc-
tures and including the “circle at infinity” (for interior punctures) or the “arc at infinity” (for boundary
punctures). This may be seen in Figure 3.3.

Often, we consider the surface S obtained by taking the oriented blow-up at the double points dl.i
and gluing the boundary circle I'f of 47 to the boundary circle I'; of d; for each 7. This surface is called
the deformation of . See Figure 3.4.

Remark 3.3. For interior nodes, we may also consider an added piece of data known as a “decoration.”
This decoration determines the gluing between F;’ and I',". Roughly speaking, this dictates how much
we “rotate” one end when gluing it to the other, and is necessary to prove general SFT compactness the-
orems like Theorem 3.21, which says that a certain family of maps into a cylindrical manifold is compact.

28



O

Figure 3.2: Similarly, collapsing along the arc shown above results in a nodal surface in which a

disk component is bubbled off.

Figure 3.3: The compactification of a twice-punctured Riemann surface. The circle and arc at
infinity are colored red.

However, the case which we will be interested in for the remainder of this chapter will not require decora-
tions (see Remark 3.20), as it involves maps into a specific cylindrical manifold. But we may also upgrade
everything in this section to moduli spaces of decorated Riemann surfaces. See [BEH 03, Section 3.3]
for details.

We now turn to a brief discussion of Deligne—Mumford compactness, first introduced in [DM69],
which ensures that any sequence of (smooth or nodal) stable marked Riemann surfaces converge to a
nodal Riemann surface S.

Definition 3.4. We say that a sequence {(Sy,/,)} of stable nodal marked Riemann surfaces converges
in the Deligne—Mumford sense to a limit surface (S, /) if there are diffeomorphisms @, : SP — SP
such that

* @, takes marked points in S to marked points in S,;
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blow up

on[3

Figure 3.4: The top left shows a Riemann surface with one interior node and one boundary
node. (The bottom left diagram shows this same surface with double points identified. This is
the “usual” way of visualizing a nodal Riemann surface.) Blowing up gives the top right diagram.
The deformation is shown in the bottom right.

¢ allnodesin.S come either from nodes which were already in the S,,’s or by degenerating the surfaces
S, along geodesics (either closed geodesics or geodesic arcs with endpoints on 4.5,,);

¢ all punctures in § come from punctures which were already in the S,,’s; and

* the pullback metrics %/ converge to the Poincaré metric #° on S.

Theorem 3.5 (Deligne—Mumford compactness for surfaces with boundary). Consider a sequence of sta-
ble Riemann surfaces (S,, j,) with punctures and marked points in the interior and on the boundary. Sup-
pose the Sy,’s all bave the same topological type and number of punctures/marked points, i.e., belong to the
same moduli space Mg, for some g, u, and b. Then we may find subsequence which converges to a stable
nodal Riemann surface with marked points.

This states, more or less, that Mg) b 1S 2 compact topological space whose topology is given by Defi-
nition 3.4. Thus the only degenerations allowed come from degenerating (or collapsing) at a closed circle
or an arc with boundary on the boundary of the Riemann surface. A more formal statement of Deligne—
Mumford compactness for Riemann surfaces with boundary may be found in [Wen08, Section 3.3], and
a proof may be found in [SS92, Theorem 5.7.1].
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For example, if we add at least one marked point to the Riemann surfaces in Figure 3.1, then it would
be an example of Deligne-Mumford convergence. Note that the underlying surface, with ¢ = 1 and
@ = b =0, is not actually stable. Similarly, if we were to add a marked point to the Riemann surfaces in
Figure 3.2, then we would have an instance of convergence in M 1 ;. (Indeed, the geodesic arc which is
drawn in that figure would only be geodesic with respect to the hyperbolic metric if we already had an
interior marked point, or two boundary marked points.)

3.2 The moduli space of holomorphic curvesin £ x [0,1] xR

We will now define the moduli space which will be used for defining the differential for Heegaard Floer
homology. Let H = (%, &, B, z) be a Heegaard diagram where X has genus g. As mentioned before, the
differential will be defined by counting certain curves in X X [0, 1] X R with boundary on €, U (s and
which converge to generators at # = +oo. In this section, we define the relevant moduli space.

We want to only count holomorphic curves, so we must put an almost complex structure on X X
[0,1] X R. To do so, we first make the following definitions.

Letzp : X x [0,1] X R — [0,1] x Rand zz : X X [0,1] X R — X denote the obvious pro-
jections. We let s and ¢ denote the [0, 1]- and R-coordinates, respectively. Furthermore, fix a point z;
in each component of Z \ (2 U B). Let wx be a symplectic form on Z, and consider a split symplectic
form w = ziws + 7} (ds A dt) on X x [0, 1] X R. Let /s be an almost complex structure on X which is
ws-compatible.

Definition 3.6. Analmost complex structure / on X X [0, 1] XR is admissible if it satisfies the following
requirements:

(J-1) J is tamed by w.

(J-2) J = js X jp is a split almost complex structure in a small cylindrical neighborhood of the fiber
{z;} X [0,1] X R.

(J-3) The R-action on X X [0,1] X R defined by translation in the z-coordinate is /-holomorphic.

(J-4) J(0/dt) = 0/ 0s.
(J-5) J preserves T (X X {(s,2)}) forall (5, ¢) € [0,1] X R.

In the second condition above, we shrink the neighborhoods so that they do not intersect (2 U B) X
[0,1] x R. Since /(0/0t) = 0/0s, we call the vector field 0/0s the Reeb vector field. (Compare this
with [BEH03, Section 2.1]. From now on, we will always assume X X [0, 1] X R is equipped with an
admissible almost complex structure, unless otherwise specified.

Since we want our curves to converge to generators at ¢ = +00, we allow their domains to have punc-
tures. Thus we make the following definition.

Definition 3.7. A source (S, ;) is a Riemann surface with boundary and with finitely many punctures
on the boundary such that each puncture is labeled either + or —.

We consider two sources to be equivalent if there is an orientation-preserving, label-preserving difteo-
morphism between them. Note that § need not be connected.
Fix an admissible /. Then the curves which will factor into our definition of the differential are /-

holomorphic maps # : (S, S) — (£ x [0,1] X R, C, U Cp) which satisfy the following:
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(M-0) S is smooth, i.e., not nodal.

(M-1) The boundary 45 is mapped to C, U Cp.

(M-2) #isan embedding.

(M-3) The energy of «, as defined below, is finite.
(M-4) 7p o u is nonconstant on every component of S.

(M-S) Forevery ¢ € R and every curve a;, #~ ' (2; X {1} X {¢}) consists of exactly one point. Similarly,
u™1(B; X {0} x {t}) consists of exactly one point.

(M-6) For every positive puncture g, we have lim,,, (¢ o #)(z) = co. Here ¢ is the coordinate projection
X x [0,1] xR — R. Similarly, for every negative puncture g, we have lim,,, (¢ o ) (z) = —c0.

We call this last condition weak boundary monotonicity. (We will define strong boundary mono-
tonicity later on, in the bordered case.)

Note by [HWZ96, Theorem 2.8] or [Abb04, Proposition 4.5] that a holomorphic map satistying
(M-0)-(M-6) converges to x X [0, 1] for some generator X at co. After all, each positive puncture should
limit to a characteristic chord, that is to say, to a trajectory of the Reeb vector field. In this case, since
(M-6) implies that # — oo near a positive puncture, this means that each positive puncture should limit
to some chord x; X [0, 1] X co. (M-5) implies that each x; should be an element of @ N B and, since there
are exactly ¢ positive punctures and ¢ negative punctures, that the set of all xv,’s should be a generator of
the Heegaard diagram. The same is true at —oo.

This means that 7z o # is a g-fold branched covering map.

Now we introduce the definition of energy which is used in (M-2), and in the remainder of this work.
We are working with holomorphic curvesin £ X [0, 1] XR, which is an instance of a cylindrical symplectic
manifold /" X R. (In our case, V' = X X [0,1].) The pullback of the symplectic form ws on X to V'
has rank two. Its kernel is generated by d/ds, which is called the Reeb vector field. The condition that
J(0/0t) = 0/0s then says that the almost complex structure maps the vector field which generates the
R-translations (i.e., the translations in the cylindrical direction) to the Reeb vector field. This is a standard
technical requirement for studying pseudoholomorphic curves on cylindrical manifolds. Details may be
found in [BEH"03, Section 2].

Definition 3.8. Theenergyof# : S — IV xR =X x [0, 1] X R is given by the formula
E(u) = /(m; oun)*w+ sup /(¢ otou)dtA(myoun)l
S ¢ Js

where w is the symplectic form on X and 7y is the projection to V' = X X [0, 1]. The supremum is taken
over all functions ¢ : R — Ry with compact support and integral 1. The first term in the energy is
called the w-energy; the second is called the A-energy.

In particular, we “forget” the energy in the R-direction. After all, since # projects to a covering of
[0,1] X R, hence of R, the energy in the R-direction is infinite.
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Remark 3.9. We will mostly be concerned with energy only insofar as to whether or not it is bounded.
In our case, the 1-energy will always be bounded. After all, roughly speaking, the A-energy is obtained by
computing the maximum “width” of # (in the s-direction) over some interval of R. In particular, since
u is a g-fold branched cover of [0, 1] X R, it follows that this width is bounded by ¢. That is to say, the
A-energy is always bounded by the genus ¢ of the Heegaard diagram.

Finally, we make the following definition.
Definition 3.10. The holomorphic curve « stable if

* notall components of the curve are twice-punctured disks which project down to a single point in
2; and

* every connected component on which # is constant is stable.

Define M3(x,y;S) to be the space of holomorphic curves from a source S which satisfy (M-0)-(M-
6), connect the generators x and y, and belong to the homology class B € 7,(x, y), all quotiented out
by the automorphisms of S. The R-action on X X [0,1] X R, namely the translation action, induces an
R-action on this moduli space. This action is free if # is stable.

Thus we may define M%(x, y;.5) to be the quotient MB (x,y;:5)/R.

Lemma 3.11. If /F\/\l/B(x, y;S) is nonempty, then B is a positive homology class. That is to say, all of the
coefficients in its corresponding domain are nonnegative.

Proof. Suppose « is an element in M5 (x, y;.5). Its multiplicity at a region R is exactly equal to the in-
tersection number # - ({p} X [0,1] X R) for some point p € R. Since /(0/dt) = 3/0s by (J-4), we
know that the fiber {p} x [0, 1] X Ris/-holomorphic. Thus this is the intersection number between two
J-holomorphic curves, which is positive by [MW95, Theorem 7.1]. O

Proposition 3.12. There is a residual st Jreg of almost complex structures for which the moduli spaces

M(x,y;S) are transversally cut out by the 0-equations, hence are smooth manifolds. In particular, by the
Baire category theorem, this is actually a dense set of almost complex structures.

In this context, a residual set is one which contains a countable intersection of open dense sets. The
proof is similar to the proof of [MS12, Theorem 3.1.6].

It ] is an element of /e, then we say that it achieves transversality. The above proposition states
that generic / achieve transversality, so we may always assume this property.

Given that M(x, y;.S) are smooth manifolds, we may ask what their expected dimension is. To define
this, we define the Euler measure of a region Rin X \ (2 U 8) to be

1 1
e(R) =y(R) - 7 #(acute corners in R) + 7 #(obtuse corners in R),

where y(R) is the Euler characteristic and where a “corner” is an intersection of an a- and 3-curve. Note
that we implicitly choose a Riemannian metric here so that our - and -curves meet at right angles.
The difference between an acute and obtuse corner is illustrated in Figure 3.5. (The usual definition of
the Euler measure is 1/27 times the integral over R of the curvature. By the Gauss—-Bonnet theorem,
the definition above is equivalent to this usual, less combinatorial definition.) We extend by linearity to
define the Euler measure of any linear combination of regions, i.e., of any domain.
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Figure 3.5: The source S appears projects onto some region R in %, shown here as the shaded area.
The left side shows an obtuse corner, while the right side shows an acute corner. Counting such
corners gives the Euler measure.

Proposition 3.13 ([Lip06a, Corollary 4.3]). The expected dimension ind(B, S) of MB (%,y;8) 7s
ind(B,S) =g — () + 2¢(D(B)),

where D(B) is the domain associated to the homology class B. Recall we assume that maps in MB (%y;S)
are embedded. If MB(x,y; S) is nonempty, then

g

D n(B) +my, (B)) +e(D(B)),

i=1

xS =g-

where x; and y; are the particular points in the generators X and'y, respectively, and where n,(B) denotes the
local multiplicity of B at the point p € X. Thus the expected dimension depends only on B, and we write

- g
ind(B) = dim M2(x,y; ) = (Z 7, (B) + 1, (B)) +e(D(B)).

i=1
Now we may define a moduli space which is source-independent. In particular, define

g

){emb(B) = g (Z 7y, (B) + ”y,- (B)) + 6‘(D(B)):

=1

sothaty(S) = Yemb(B) whenever MB (%, y;5) isnonempty. Then define the source-independent moduli
space - -
Mixy) = | ) MB(xy;)
Z(S):}(emb(B)
We define M(x, y) by quotienting out by the translation action in the R-coordinate.
Later on, in the definition of Heegaard Floer homology in Section 2.5, we will define the differen-
tial by counting curves in M?(x,y) where B € 7(x,y) ranges over all positive homology classes with

ind(B) = 1. We can do this because Proposition 2.16 guarantees that there are only finitely many B to
consider.
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3.3 Holomorphic buildings

To compactify this moduli space, we must allow two kinds of degeneration: First, we must allow our
sources to degenerate into nodal sources. For example, the limit of a sequence of maps #,, : (S,7,) —
2 % [0,1] X R could have nodal domain if the Riemann surface structure 7, “pinches down” at some
pointin S. These kinds of degenerations, known as Deligne—Mumford degenerations, were explained in
Section 3.1. Second, we must allow degeneration at # = +oo. This degeneration occurs when the maps
themselves “escape to infinity” near the punctures or nodes, and is indicated in Figure 3.6. In particular,

"N

=0

t=—00
A4

—>

"N

=00
t:—OOV

Figure 3.6: Consider the sequence of maps in Figure 3.2. This forms a boundary node, as shown
on the left side above. If the #-coordinate approaches co from one side of the node (namely the
“genus-1side,” i.e., the side which does not belong to the degenerated disk), then we get the dia-
gram on the right, where the degenerated disk escapes to infinity.

any two points of a single holomorphic curve are necessarily a finite distance apart. Furthermore, the
energy is concentrated on a bounded portion of this curve, and thus vanishes as # — +oc0. Holomorphic
buildings let us consider curves where some parts go to infinite relative to other parts and where the energy
may accumulate at # = +oo.

This second kind of degeneration uses ideas from symplectic field theory, namely the definition of a
holomorphic building as introduced in [EGHO00] and [BEH"03].

We will only need to use holomorphic buildings in X x [0, 1] X R, but in general one may define holo-
morphic buildings in cylindrical almost complex manifolds 7 X R, as well as in manifolds with cylindrical
ends. In particular, the domains of our holomorphic maps in this section are once again sources as in Def-
inition 3.7, as opposed to the more general setting of stable nodal Riemann surfaces with punctures and
marked points that we considered when discussing Deligne—Mumford compactification. (The main dif-
ference is that we do not have marked points or interior punctures.) See Sections 7 and 8 in [BEH 03],
or Chapter 3 in [Abb14], for more details about the general case.

Definition 3.14. Consider a sequence of stable maps #;, € MPBe(x4_y, x38) fork = 1,..., N. Let S,
denote the compactification of S, and 7z, © #;, the compactification of 75 0. We may form the piecewise
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smooth surface
S::SIUS2U"'USk.

If the maps 75 o #;, glue to a continuous map on §, then we call the sequence {#;,} a holomorphic build-
ing of height NV, which we denote U.

In this context, we call the #;’s the stories of the building, and call £ the level. Furthermore, we say
that .S is the preglued source of U. If #;, has homology class By, then U has homology class By *- - -* By €
7f2(X0, ey XN).

Remark 3.15. In this context, we allow our sources S, to be nodal Riemann surfaces. In general, when
we want to explicitly include or exclude nodal sources as a possibility, we will say so. However, when
the distinction is unimportant, we will sometimes just talk about “holomorphic curves” and “sources”
without mentioning whether they are smooth or nodal.

Intuitively, a holomorphic building is a sequence of holomorphic maps such that the asymptotics
of u;, at the positive punctures agree with the asymptotics of #;; at the negative punctures. (Strictly
speaking, a holomorphic building also comes with an ordering of all the punctures, but we omit this
detail here.) See, for example, Figure 3.7.

0 1

Figure 3.7: The components in blue lie on the cylinder C5 = £ x {0} X R, while the components
in red lie on the cylinder C,. Let x be the generator corresponding to the black dots at the bottom.
(Note that black dots on the same horizontal line correspond to the same point in X; points in x
are elements of 2N j.) Let w be the generator corresponding to the gray dots, and y the generator
corresponding to the white dots. Then this shows a two-story holomorphic building from x to y
in homology class B; * B,, where the first story shows a curve in M5B (x, w) and the second story
shows a curve in M52 (w, y).

Another way to think of a holomorphic building is as a nodal curve with some of the nodes removed.

(These deleted nodes correspond to the positive/negative ends of consecutive stories which glue together.)
See Figure 3.8.
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Figure 3.8: This diagram does not show the [0, 1]-factor. The bottom layer consists has three
points x1, %, 3 in black, while the top layer has three such points yi, ¥, y3. Then this diagram
goes from x to y, and we may think of it as a curve whose domain is the nodal curve whose double
points are exactly those points labeled with white (unshaded) dots the diagram above. Thus we
may think of a holomorphic building as the nodal curve below, with punctures corresponding to
the black dots and removed-nodes corresponding to the white dots.

Consider two holomorphic buildings of height 1, i.e., two stable holomorphic curves # and #" with
source S and &, respectively. They are called equivalent if there is a diffeomorphism between S and S
which preserves the complex structure and such that #” 0 ¢ and # are the same up to a translation in the R-
direction. In general, if U and U” are height-N holomorphic buildings, then we call them equivalent if
their respective stories are equivalent and if these equivalences commute with the attaching maps between
stories. (These attaching maps were implicit in our definition of a holomorphic building. They are used
to glue the S’;’s to form the preglued surface :S:)

We now define moduli spaces of holomorphic buildings, as well as a notion of convergence within
these spaces.

Definition 3.16. The moduli space of all (possibly nodal) holomorphic buildings in the homology class
B and with asymptotics x at —co and y at oo, and whose preglued sources have the same topological type

as S, is denoted by W(x, y;S).

Definition 3.17. Consider a sequence {U, } of holomorphic buildings of height at most /N. We say they
converge to a building U of height IV if the following properties hold.

¢ The deformations SZ‘.D of the underlying surfaces S, of U, converge to the deformation SP of the
underlying surface S of U in the Deligne-Mumford sense.

* If ¢, is the diffecomorphism from § Do S f coming from the Deligne—Mumford convergence, then
the projection of #,, o @, converges uniformly to the projection of # on X X [0, 1].

* Let I'; be the set of boundary circles of the 7-th level of the building U. Let Cp be the union of
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the components of S?” \ |J I, which are on the ¢-th level, where ¢ = 1,..., N. Then there exist
sequences of real numbers ¢, for » > 1 such that (0 %, 0 @, —tou—c) — 0in Cl%c'

This last condition more or less says that we can think of the ¢-th level of U as the limit of R-translates
of levels of the U, ’s. In the case when the U,’s are all honest curves, and not just buildings, note that

& — & — ocoasn — oo. Intuitively, this says that consecutive levels in a holomorphic building are

n
infinitely far apart in the R-direction, since the R-translates which converge to the different levels of the

limit building differ by a larger and larger amount.

As the notation suggests, the moduli space W(x, y;S) is compact; thus holomorphic buildings give
a compactification of our moduli space of holomorphic curves.

3.4 Compactification via holomorphic buildings

We now have the following statement of compactness. This is the relative version of [BEH 03, Theorem
10.1], i.e., with sources with boundary. Alternatively, see [Abb14, Theorem 3.20] for a formal proof.

Theorem 3.18 (SFT compactness). For every Eo, the space of holomorphic buildings in M®(x, y; S) with
energy bounded above by E is compact. Since the moduli space bas a metric [BEH" 03, Appendix B.2], we
can restate this as follows: Any sequence {U,} of holomorphic buildingsin M®(x, y; S)N{U : E(U) < Ey}
has a convergent subsequence, and the limit has homology class B.

Since we may handle convergence of each level separately, it is enough to prove the above theorem
in the case of height-1 holomorphic buildings, that is to say, in the case that each U, = #, is a stable
holomorphic curve.

Consider sources (S5, 7,) of #, with punctures and nodes. (All of the S,,’s have the same topological
type, namely that of S, but we may vary the Riemann surface structure.) Recall that we think of nodes
as identified double points. We may then delete each node of S,, so that .S, is assumed to be smooth, and
carry a set M, of marked points consisting of the pre-existing punctures and nodes of .S,,. This is fine
because nodes (and hence all the points in A1},) are treated like punctures, at least from the perspective of
hyperbolic metrics and the Deligne—Mumford moduli space.

The upshot of this is that we may prove Theorem 3.18 for stable holomorphic curves whose domains
are smooth, punctured (i.e., marked) Riemann surfaces. Note that, even in this case that #,, has smooth
source, the limit #, — U might have nodal source. Any nodes which form in the limit are still called
“nodes.”

Thus it is enough to prove the following statement.

Theorem 3.19. Considera sequence {u,} of holomorphic curvesin MP(x,y; S) with energy bounded above
by Ey. (As per our remark above, the source S may have some marked points.) Then there is a subsequence
which converges to a stable holomorphic building U of finite height N and in the homology class B.

Proof. We begin with an intuitive idea of the proof. Deligne—Mumford compactness says that the (pos-
sibly nodal) limit surface Soo = lim S, exists. It is possible to obtain a gradient bound which ensures that
in the “thick” part of Seo Roughly speaking, the “thick” part of S consists of the points x where there is
a positive lower bound on the injectivity radii at x of the metrics b,,. This basically means that we never
“pinch” the metric (or the complex structure) at points in the thick part of Seo.
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By contrast, the “thin” part of S, consists exactly of (neighborhoods of) nodes and punctures. A
node is adjacent to two components of the thin part. At each component, the limit map U approaches
either a pointin X X [0, 1] X R or a holomorphic strip modeled over a Reeb chord x; X [0, 1] at the node.
It then suffices to show that U takes the same value on both sides of the node, that is to say, it limits to
the same value as it approaches the node from either component. The only possible issue is that there
may be some energy which is lost between the two sides. This comes up if there were actually a bubbled-
off cylinder or strip which forms at the node. By adding enough marked points to the original surface,
we may make sure that this component is seen in the Deligne—Mumford limit Se. The same holds true
for convergence over punctures. Finally, the level structure of the limit is based on how degenerated
components of the Deligne—Mumford limit, which have positive/negative ends at the nodes in the limit
surface, attach to other components.

Given this brief overview, we now turn to the actual proof.

Step 1. The limit surface. We think of our holomorphic curves #,, as having domain S, with marked
point set M. Each S, has the same topological type S, but the complex structure j, may vary. Add
marked points (as needed) to stabilize the surfaces S,,.

Fix a point p, in each region » of X. We may pick p, generically, so that they are regular values of
s, o uy for all n. Let {g;,,,} = (7s o un)_l(p,) C S, be the preimages, and add them to the marked
point set M, of S,. These marked points implicitly keep track of the homology class B, since the number
of points g, , for each region 7 tells us how many times ,, crosses the region.

Deligne-Mumford compactness implies that the surfaces .S, converge to a nodal Riemann surface
Seo. This convergence comes with certain maps @, : Seco — S,. (Technically, these maps are between the
deformations of Se and S,, but it is more useful for now to think of S, and S, as punctured surfaces,
rather than as their deformations.) We also have a Poincaré metric b, on each S,,. Recall that the pullback
metrics @, b, converge to the Poincaré metric ho 0n Seo. (Note that hyperbolic metrics depend not only
on the complex structure j,, but also the marked point set.)

Step 2. Thick-thin decomposition. Let b, be the Poincaré metrics associated to 7, and our marked
point sets M,,. We have a Poincaré metric o on Se which is the limit of the 5,’s. With p(x) denoting
the injectivity radius at x with respect to this limit metric, we define

Thick,(Seo) = {x € S0 : p(x) > ¢} Thin,(Se) = {x € Seo : p(x) < €}

to be the e-thick and e-thin parts, respectively. It turns out that, for ¢ < sinh™ 1, the &-thin part con-
sists entirely of finite cylinders and punctured disks, as well as finite strips and punctured half-disks. See
Figure 3.9 below. Each finite cylinder C has a unique closed geodesic of length 2 inf .cc p(x). We call

Figure 3.9: These are components of the e-thin part of Se. On the left is a finite strip with short
geodesic arc I, indicated by the red arc. On the right is a punctured half-disk.

this geodesic a short geodesic. Similarly, the finite strips have short geodesic arcs with endpoints on the

boundary. There are finitely many of these geodesics, and they are all pairwise disjoint. See [Hum97,
Chapter IV.4] for details.
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When not specified, we will always assume that ¢ < sinh™ 1 when we are discussing e-thick and
e-thin parts. The upshot is that this implies that every connected component of Thin,(S) is either a
small collar neighborhood of a short geodesic (as in Figure 3.9(a)) or a small cusp neighborhood of a
puncture (as in Figure 3.9(b)). Note that we only have punctures on the boundary, since S is a source (cf.
Definition 3.7), so our “cusp neighborhoods” are actually half-cusp neighborhoods which, topologically,
look like [0, 00) x [0, 1] instead of [0, c0) X S™.

Step 3. Convergence over the thick part. Let I';’s denote the short geodesics (corresponding to the
nodes and interior punctures) or embedded arcs with endpoints at 45 (corresponding to the bound-
ary punctures). Strictly speaking, the curves I, which we call special curves, should correspond to the
blown-up nodes and punctures in the deformation. But these special curves have length 0 in the deforma-
tion too, so it doesn’t hurt to just think of them as points.

We have uniform bounds on [|V(#, 0 @,) (x)|| forall x € S \ U T;. This bound implies convergence
over the thick part. In particular, we certainly have a subsequence which converges with all derivatives
over the ¢-thick part for some fixed ¢ > 0. (This uses a result of [Gro85]. A proof may also be found
in [MS12, Theorem 4.1.1].) After translating in the R-direction, we may apply Arzela—Ascoli to extract
a subsequence which converges in the C} -topology away from the punctures and the special geodesics,
i.e, onSe \ JT7. Say the limit is some holomorphic map .

Step 4a. Convergence over nodes. Now we must prove convergence on the thin part of S. For small
enough ¢, this thin part consists of small neighborhoods of two kinds of points. The first kind are nodes
in §, which were created by taking the limit 7 — oo by shrinking some of the short geodesics (i.c., the
closed geodesic curves in a finite cylinder or the geosdesic arcs in a finite strip) on the sources S;. The
second kind are (boundary) punctures in S, which were already there before taking the limit. In this step,
we tackle the first case.

A node g is adjacent to two components C* and C~ of Thick(S«), as seen in Figure 3.10. If # is

Figure 3.10: The e-thin part of So, consists of a small neighborhood of the node indicated above.
(Topologically, this is just two disks glued together at a point on the boundary.) Outside of this
neighborhood is the e-thick part of Seo. Ase — 0, the thick portion approaches the node in two
different components, labeled C* and C~ above.

bounded near ¢, thought of as a point of C¥, then the removable singularities theorem (see [MS12, The-
orem 4.1.2]) implies that # extends continuously over g on the C* side. Otherwise, it approaches a holo-
morphic strip x; X [0,1] X [R, o) or x; X [0,1] X (=00, R] modeled over some characteristic chord
[HWZ96, Theorem 2.8]. (In general, it may approach any Reeb orbit; here, since the Reeb vector field is
0/ 0s, this is the only possible limit. In particular, since there are no periodic orbits, interior nodes must
converge to a single point.) The same is of course true if we think of the node as a point of C.

Let * be the asymptotic limits over C* of # at the node. We would like to show thaty* = 7.

This node appeared by degenerating a component of Thin,(S,) along a circle (if the node is in the
interior) or an arc with boundary on 4, (if the node is on the boundary). In particular, there is a confor-
mal parameterization near g by some interval times either § 1if g is in the interior, or [0, 1], if ¢ is on the
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boundary. See Figure 3.11. More precisely, let 7, be the component of the ¢-thin part of S, (equipped
n=1 n=10 n =100

D (YT
| | |

e x [0,1] —— X [0,1]

x [0,1]

Figure 3.11: This shows how the parameterization g7, : [-N}, N;] X [0,1] — T} changes as
increases. Note that “collapsing” along the red arc is the same as stretching into an arbitrarily long
strip. After all, the [0, 1]-factor corresponds to the direction perpendicular to the red arc. The
component [-N;, N;], which is depicted by the green intervals above, becomes long in compar-
ison to this [0, 1]-factor, since the red arc becomes short. (In the interior node case, which is less
important for our purposes, we stretch into an arbitrarily long cylinder.)

with the metric @}, /,, not with the metric /o) which contains 4. This component is a collar neighbor-
hood of the degenerating (i.e., collapsing) circle or arc. There is a conformal map

& A5 = [-N5 NF] x [0,1] — T

(Again, we replace S 1 with ! in the case that g is in the interior; we will stop repeating this, since this is
the less relevant case for us, but it continues to hold true for the rest of this step.) Note that applying #,,
and projecting to X X [0, 1], limits to our Reeb chords:

11[‘[(1) lim (772 X-f) Oy O Py Og;'tNZX[O,I] = 7/i-

e—0 n—00
Loosely speaking, after all, we approach g from C* when we evaluate this map at £}, x [0,1].

Denote the map (75 X 5) 0 #,, © @, © g7, by v7,. We may ask that ¢}, has a uniform gradient bound over
A:,. As such, we may choose some ¢, — 0 and a subsequence (which we still denote with subscript 7)
such that

Jim o7 (+N7 x [0,1]) =7~
For large 7, the maps v} thus define a homotopy between y* and ™. We can assume that the homology
class of this homotopy is independent of 7, so call this homotopy ®.

We have two cases now: Either we have lost energy between »* and y~ (corresponding to energy in
the cylinders 4%), or we have not. In fact, it is enough to consider whether we have lost w-energy, i.e.,

whether /[0,1]><[0,1

If the w-energy is also notlost, then " = ¥~ and our holomorphic strips [N}, N ] % [0, 1] have very
small w-energy. In the case that y* is a trajectory, we may use [HWZ02]. If y* is instead a point, the result
follows from [BEH"03, Lemma 5.14]. Roughly speaking, the first result tells us that cylinders—and
hence, by a doubling argument, strips—with small energy look like trivial cylinders (respectively, strips)
over a Reeb trajectory, while the second one says that the diameter of the v,’s approaches 0.

| ®d*w is zero or not.
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If, on the other hand, we have lost energy, then since Vv, was assumed to be bounded (thanks to
the gradient bound on ¢?), the only possible place for bubbled-off energy is at the node itself. This cre-
ates strip-breaking at boundary punctures, or cylinder-breaking at interior punctures. These strips have
positive energy corresponding to the lost energy, but no marked points since they did not appear in the
Deligne-Mumford limit. But positive energy implies that the projection to X is nonconstant, so such a
strip must have passed through one of the points p, chosen in Step 1. This means that there must be a
marked point on a bubbled-oft strip, a contradiction, so this case never occurs.

Step 4b. Convergence over punctures. The idea for punctures is very similar to that of nodes. The
only difference is the following: In the case where ¢ was a node, it was adjacent to two components,
and we showed that the components approach the same value at 4. In the case where ¢ is a puncture,
it is only adjacent to a single component. Using the notation v%, = #, o @, o g7, but here with g7 the
parameterization of a cuspidal neighborhood of 4 by [0, 00) X [0, 1], we see that the puncture approaches
one limit

y1 = lim lim o}, ({x} X [0,1]).

n—00 x—090

(Note that we only consider the case when ¢ is a boundary puncture, since our definition of a source only
allows for boundary punctures. Unlike nodes, which can form in the limit by degenerating along curves,
the limit surface Seo can only have the punctures which were already found in S, i.e., in the topological
type of the S,,’s.) There is another way to get the limit of the puncture, however, namely by translating
v;, in the R-direction, and then taking the limit y,. That is to say, the maps v, — (z o ©£)(0, 0) are also
asymptotic to some Reeb trajectory. To show that these are the same, we again split into cases depending
on whether any energy is lost.

Step 5. Obtaining the level structure. Since we will almost never need the exact details of the level
structure, we will be brief in this step. Label the components of Thick(Sw) = S \ UTjas Gy, ..., Cy.
We say that C; < C; if, for points x; € C;and x; € C;, we have

limsup[(z 0 u,)(x;) — (2 0 1) (x7)] < .
n—00
If C; < Cyand G; < C, then we say that C; ~ C;.

This produces an ordering on the components of Thick(Se). We say that the first level consists of
those components which are minimal with respect to this ordering. The second level consists of the next-
smallest components, and so on. It is possible that a node “jumps levels,” so that C* (to use the notation
from Step 5a) haslevel N but C™ haslevel N +5, for example. In this case, we add the appropriate number
of vertical cylinders/strips between these components.

We may now remove the extra marked points {g;,,, } which we added in Step 1. This is fine since these
marked points only lie on components whose projection to X is nonconstant, so removing these points
will not create any unstable components. Thus we have a holomorphic building U which is the limit of
the curves #;.

Finally, note that this limit curve U belongs to the homology class B. This is because the marked
points g,., , determine the domain of our holomorphic building. Since the #,,’s all had homology class B,
so too does U. O

Remark 3.20. Recall in Remark 3.3 that we said that we would not need decorations. To prove SFT
compactness in the more general setting, i.e., for holomorphic buildings in a general cylindrical manifold
V' X R (see Theorem 3.21), however, we would need decorations. Decorations would be necessary to
ensure that »* (in the nodal case) and y; (in the puncture case) have the same parameterizations, and
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thus glue together properly. But because there are no periodic Reeb orbits, there is only one preferred
parameterization of our Reeb orbits, namely once along the chord [0, 1].

This theorem not only implies that our moduli space MB(x,y;S) canbe compactified by considering
holomorphic buildings, but also tells us what the possible degenerations are.

Finally, we note that the proof of Theorem 3.18 may be generalized to the following statement about
cylindrical manifolds 7" X R.

Theorem 3.21 ([BEH 03, Theorem 10.1],[Abbl4, Theorem 3.20]). If W = V X R is a cylindrical
manifold with a totally real submanifold L, then for every Ey, the space

M, (V xR, LJ) N {E(U) < E}

is compact. The modult space above is the space of holomorphic buildings in V' X R with boundary in L,
domain of topological type S, and exactly u marked points.

3.5 Restricting degenerations

Ultimately, our goal is to define some kind of Floer homology using the holomorphic curves in the moduli
space M5 (x,y;.5). As in many Floer contexts, we will show that our moduli space M%(x, y;.S) is in fact
a manifold of dimension ind(B, .S) — 1, at least in the case that ind(B) < 2.

Our first step will be to limit the possible kinds of degeneration which may occur. It is worth sum-
marizing which degenerations are even allowed. In particular, the proof of the compactness theorem
(Theorem 3.18) implies that we only have the following types of degeneration:

* The source can degenerate into a point on the boundary of the moduli space of Riemann surfaces.
This happens when we pinch the conformal structure of the S;’s along some circles and/or arcs,
which causes nodes to form.

— The map could extend continuously over a node, thus sending it to a pointin £ X [0, 1] X R.
This results in a nodal surface.
— If the R-coordinate approaches +oo near a node, then we obtain a level splitting.
* Itis also possible that, instead of the source degenerating, the map degenerates by becoming sin-

gular at some points. (This happens, in particular, if the gradient blows up at a marked point, e.g.,
a puncture.)

— If the derivative blows up at a puncture of .S, thus causing another type of level splitting at
+00. Whether the splitting occurs at co or —oo depends on whether the puncture is marked
with a+ or witha —.

— If the derivative blows up at an interior point, then we bubble oft a holomorphic sphere.

— Finally, the derivative blows up at a boundary point, in which case we bubble oft a holomor-

phic disk.

We begin by restricting which degenerations are allowed to appear.
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Lemma 3.22. The only codimension-one degenerations which may occur from a sequence of J-holomorphic
maps u, € M3B(x, y;S) converging to a holomorphic building U = {U;} are level splittings. In particular,

the limit surface bas smooth underlying source.

Proof. First, observe that we cannot bubble of holomorphic spheres and disks. After all, a holomorphic
sphere would correspond to a nontrivial element of 75 (X X [0, 1] X R) = 0, while a holomorphic disk
would correspond to a nontrivial element of 7, (XX [0, 1] XR, C,UCp) = 0. (Recall that C, = ax {1} ¥R,
while Cp = 8 X {0} X R.)

It therefore suffices to show that the only nodes which may form come from level splittings, i.e., we
can only pinch the conformal structure along arcs with one boundary point on the a-curves and one
on the -curves. An interior Deligne—Mumford degeneration is obtained by pinching some number of
circles, and results in an interior node. This is a codimension-two degeneration.

Now we show that we cannot form “cusp degenerations,” that is to say, we cannot pinch the confor-
mal structure along arcs whose boundary is on 8S. (These degenerations have codimension one.)

Suppose we have a cusp degeneration. LetS” be the nodal surface which is obtained from S by collaps-
ing along the arcs where the almost complex structure degenerates. Denote one of the collapsed arcs by A4.
Weak boundary monotonicity, i.e., Property (M-6), implies that the components of 5 are all mapped to
adifferent cylinder in 2 X [0, 1] X R by each #,,. Thus the two endpoints of A4 lie on the same component
C of 0S. Without loss of generality we may say that #,(C) = 2; X {1} X R. Let |J C” be the union of
components which are mapped to this cylinder ; X {1} X R by the limit curve F.

Now consider the restriction of zp o U to |J C’, where zp is the projection onto [0, 1] X R. By
the open mapping theorem, we know that zp o U is constant near one of the components C” in [ J C’,
and thus is constant on the component of §” which contains C’. Thus there is a component of §” whose
boundary is mapped by U onto the union of the cylinders with s = 1, i.e., onto @ X {1} X R. From this
and the fact that the a-circles are nonseparating, it follows by index calculations in [Lip06a, Section 4]
that the rest of U is made up of g trivial disks, so that B = [X]. But this is impossible because we assume
that B does not cross z.

We conclude that cusp degenerations cannot form either, so the only codimension-one degeneration
left comes from level splitting. This could occur either when the derivative blows up at a puncture, or if
the domain degenerates along an arc which connects a curve in @ to a curve in 8. Note that the former
level splitting results in strip breaking; the degenerated strips are unstable and thus are not seen by the
Deligne—Mumford limit. The latter case, which results in level splitting as well, is a Deligne-Mumford
degeneration. Either way, the only possible degenerations are level splittings. This is exactly what we
claimed. O

Proposition 3.23. Fix an admissible almost complex structure which achieves transversality. Let u; be a
sequence of J-holomorphic maps in MB(x,y;5) for some smooth source S which converges to a holomorphic
building U. Suppose ind(B) < 2. Then each story U; of U satisfies (M-0)-(M-6).

Proof. The previous lemma implies that (M-0) is satisfied. Furthermore, since boundary components
of the sources for the U;’s are limits of boundary components of the sources for the #,’s, (M-1) is auto-
matically satisfied. If zp o U is constant on some component of S, then bubbling must have occurred.
Theorem 3.18 implies (M-3), which states that energy is bounded, directly. Furthermore, we already ruled
out bubbling, so (M-4) is satisfied.

Showing (M-2) takes the most work. We only sketch it out here, but refer the reader to [Lip06a,
Proposition 7.1]. First, note that }} ind U = ind #,, for all z. This follows by unpacking the formula for

44



ind(B, S) given in Proposition 3.13. Index formulas analogous to the definition of ind(5) in the same
proposition imply that, near each immersed curve with £ double points, there is a 2k-dimensional family
of embedded curves. Since we assume ind(B) < 2, it follows that the dimension of the resulting moduli
would be too high. (Recall that ind(B) = dim M#(x, y;S) = dim M?(x,y;5) +1.)

To prove (M-5), it suffices to show that boundary components can neither form nor disappear in the
limit curve. But this follows from the open mapping theorem and the maximum modulus principle, as
well as the fact that the projection to [0, 1] X R is holomorphic.

We use the open mapping theorem again to prove (M-6), as well as the implicit fact that there are
exactly 2¢ punctures in each story of the limit curve. In particular, the open mapping theorem on the
holomorphic maps zp o #, implies that the R-coordinate of each #, must be monotone on any compo-
nent of 45. (This notation is to emphasize that we mean 0, minus the 2¢ boundary punctures.) Since
each story Uj; of the limit curve U satisfies (M-5), we know that it is a g-fold covering map of [0, 1] X R.
Finally, because U is the limit of (translates of) the curves #,, it follows that there are exactly g positive
punctures and g negative punctures on U;. O

To get the desired result that M?(x,y) is a smooth manifold, we still need one more lemma. We

state this roughly, and without some of the technical conditions. The details may be found in [Lip06a,
Appendix A].

Proposition 3.24. Consider a height-two holomorphic building (u1, uz) € M5 (x, w) x M (w,y).
Consider small neighborhoods Uy of uy and U, of u, inside their respective moduli spaces. Then there is an

open neighborhood of (uy, uz) in MBrB2(x, y) which is homeomorphic to Uy X U, X [0, 1).

Loosely speaking, this “gluing lemma” gives us a converse to our compactness theorem. In particular,
the compactness theorem says that a sequence of holomorphic curves will converge to a holomorphic
building. The gluing lemma above, on the other hand, says that, with certain conditions, we can reverse
this process: Any holomorphic building may be “surrounded” by an affine neighborhood of holomor-
phic curves. In particular, every holomorphic building can be obtained as the limit of some sequence of
holomorphic curves.

Putting everything together, we conclude the following.

Theorem 3.25. Consider the moduli space ME(x,y) of holomorphic curves satisfying (M-0)~(M-6) for
some smooth source S with y(S) = Yemb(B), where we identify translated curves. If ind(B) < 2 and
B # [X], then MB(x, y) is a smooth manifold of dimension ind(B) — 1. Furthermore, it is the interior

of the compact manifold MPB(x,y) which comprises all of the holomorphic buildings whose stories satisfy
(M-0)-(M-6).

3.6 The moduli space in the bordered case

To set up the bordered case, with H = (i B, z), let £ be the interior of Y. We view it as a Riemann
surface with a puncture p. Alternatively, we may view it as having a cylindrical end AT xR. In particular,
we choose a symplectic structure wy on X with respect to which OY is an infinite cylindrical end. Let
Js be, as before, an ws-compatible almost complex structure. We ask, furthermore, that the a-arcs are
cylindrical at p in the following sense: For a fixed (punctured) neighborhood U of p and identification
¢ : U — S'x(0,00) C T*S", we have that both js|; and $(2¢ N U) are invariant with respect to
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R-translation. Finally, let 2z be the result of filling in the puncture p of . Note that /s induces an almost
complex structure on ;.

Definition 3.26. An admissible almost complex structure / satisfies (J-1)—(J-5), as well as the following
additional requirement:

(J-6) J splits as / = js X jp in a fixed R-invariant neighborhood of the fiber {p} X [0,1] X R of the

pl.ll’lCtLlI'C p

In the closed case, X X [0, 1] X R had two ends: one at o0 and one at —c0. Now, we have a third end,
namely the puncture (equivalently, cylindrical end) of X. Thus we must allow a wider range of sources.

Definition 3.27. A decorated source S” consists a smooth (not nodal) Riemann surface S with bound-
ary and with finitely many punctures on the boundary such that each puncture is labeled +, —, or ¢. Fur-
thermore, each e puncture is also labeled by a Reeb chord in (Z \ 2, a), where (Z, a, M) is the pointed
matched circle associated to dX.

We also refer to the e punctures as “east punctures,” since we visualize the cylindrical end of X as
stretching out into the east.

For our holomorphic curves # : (S, 45) — (£ X [0,1] X R, C;, U Cp), we now have the following
conditions. Note that some of them are similar to conditions (M-0)-(M-6) above. However, note that
we drop the condition that # must be an embedded curve. This slightly larger moduli space is more easily
compactified, so using this as our definition will help us in Section 3.8.

(M-1) « is /-holomorphic.

(M-2) uis proper and extends to a proper map #; : S; — 2z X [0,1] X R.

(M-3) #; has finite energy, again in the symplectic field theory sense.

(M-4) 7p o uzis a g-fold branched cover. In particular, 7p o # is nonconstant on every component of S

(M-5) For every positive puncture g, we have lim,,, (¢ o #)(z) = co. Here ¢ is the coordinate projection
2 X [0,1] X R — R. Similarly, for every negative puncture g, we have lim,_,,(¢ o ) (z) = —co.

(M-6) Ateach east puncture g, lim,,, (75 o #)(z) is the Reeb chord labeling 2.
(M-7) ms o u does not cover the region of X which is adjacent to 2.

(M-8) For every r € R and every curve «, u_l(aé X {1} x {¢}) consists of exactly one point. Similarly,
u1(B; x {0} X {t}) consists of exactly one point.

Again, we call the last condition weak boundary monotonicity. Sometimes, we impose the condi-
tion of strong boundary monotonicity.

(M-9) For every ¢ € R and every arc «, u'l(a;’ X {1} X {¢}) consists of at most one point.
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A holomorphic map satistying (M-1)-(M-8) converges to a g-tuple of chords x X [0, 1] at —oco, and
similarly at co. Here, x = {x;} is a generalized generator; it is like a generator, but more than one x;
may lie on the same a-arc because we do not impose (M-9).

Now for B € m,(x,y) and S* a decorated source, we may define MB (%, y;5%) in the same way as
before. Once again, if ./\F;l79 (%, y;S7) is nonempty, then B is positive.

In the bordered case, we cut down our moduli space by imposing certain time requirements on the
east punctures. Let £(S”) be the set of east punctures of S”. In particular, for # € MB (x,y;57)and a

g € E(S”), define the evaluation map ev, (%) = (¢ o #z(g) from MB (x,y;57) to R. We may put all the
evaluation maps together to get the map

ev = 1—[ evy : W(X, y;S7) — REGST),
qEE(S™)

Let P = {P;} be a partition of £ = E(S”). Define the partial diagonal Ap to be the subspace of RE
such that x, = x, whenever p and g are east punctures in the same part P;.

Definition 3.28. Let x and y be generalized generations, B € 7, (%, y) a homology class, S” a decorated
source, and P a partition of £. Then define

W(X, y; ST P) = ev i(Ap) C ./W(X, y;S7).

Intuitively, a holomorphic curve in M5 (x, y; %) goes off to east oo (i.e., toward the puncture/cylin-
drical end) as it approaches any east puncture. However, it may go toward east infinity at different times
for different punctures. The partition P dictates which east punctures must go off to east oo at the same
time. Note that the discrete partition, consisting of #£(S”) many singleton sets, results in no extra time

conditions for the east punctures; thus M58(x, y; §7; P) is just MB(x, y; S7) in this case.

Proposition 3.29. There is a residual set Jieg of almost complex structures for which the moduli spaces

MB (%, y;8%) are transversally cut ont by the g—eqmztz'om, hence are smooth manifolds. For any countable

set {M;} of submanifolds of RE, there is a residual set of admissible ] which, furthermore, satisfy the property
that ev : MB(x,y;S™) — RE is transverse to each submanifold M;.

Thus we may always choose / which achieves transversality in this context, that is to say, a / such

that the moduli spaces M2 (x, y; S ; P) are transversely cut out for all choices of x, y, B, S, and P. From
now on, when we are in the bordered case, we will always assume that / achieves transversality unless
otherwise specified.

We may compute the expected dimension of the smooth manifold MB (x,y;57; P).
Proposition 3.30. The expected dimension ind(B, S”, P) of MB (x,y;87; P) s
ind(B, 5%, P) = g — y(S) + 2¢(D(B)) + | P|,

where e(D(B)) once again denotes the Euler measure of the domain associated to B. Here | P| denotes the
number of parts in the partition P.
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We may now divide M2 (x, y;S7; P) up into different strata based on the time order in which each
partition class of east puncture goes off to infinity.

Definition 3.31. Let P be an ordered partition of the e punctures of §*, where P is its associated un-
ordered partition. Let ./%(X, y;S%; P) be the open subset of //\;ljg(x, y; S”; P) comprising those holo-
morphic curves such that the ordering of P induced by 7 agrees with the ordering in P. In other words,
we say that«# € W(X, y; ST 7’) ifev,(#) < evy(u) forallg € P;and g’ € Py with7 <7 in p.

There is an R-action on X X [0,1] X R, namely translation in the R-coordinate. As long as S* is
stable, i.e., S” is not the trivial collection of ¢ disks with two boundary punctures each and B = 0, this
action is free. In this case, we are most interested in the reduced moduli spaces

MB(X, y; S P) = W(X, y;S7;P)/R  and ./\/lB(X, y;SD;f)) = W(X, y;SD;j)))/R

Outside of the trivial case B = 0, these moduli spaces have dimension ind(B, S*, P) — 1.
Since the action is translation in the #-coordinate, the evaluation maps ev, do not descend to the
quotient. However, the difference ev, — ev, does, for any two ¢ punctures p and ¢. Thus we define

€Vpy = €Vp — eV : MB(x, ;87 P) > R
Furthermore, we can combine the evaluation maps into a single map
ev: MB(x, y;SD;I_))) — RE/R.

Here R acts by translation on each coordinate of RE.
An unordered partition P of E gives rise to a set [P] of multi-sets of Reeb chords which is defined by

5
replacing the punctures in P with the associated Reeb chords. Similarly, an ordered partition P gives rise

to a sequence of multi-sets of Reeb chords, which we denote [7)]

Recall that in Proposition 3.13 we were able to give a source-independent formula for the dimension
of the moduli space. Similarly, when MB(x, y; 875 j)) has an embedded representative, there is a domain-
invariant definition for the index. (We only need this for MB(x, y; S f)), and not for M5 (x, y; S75 P),
because that is the moduli space whose elements our bordered Heegaard Floer modules will count.)

We require a few definitions first.

Recall that a curve # satisfying both (M-8) and (M-9) is said to satisty strong boundary monotonicity,
and thus is asymptotic to a genuine generator. Maps which are only weakly boundary monotonic are
only asymptotic to generalized generators. In fact, the notion of strong boundary monotonicity is purely
combinatorial and only depends on the asymptotics of the curve.

Definition 3.32. Let s be a k-element multi-set of [2£], i.e., a formal linear combination of elements of
[2k] whose coefficients are in N U {0} and sum to k. Let g = (py,...,p,) be a sequence of nonempty
multi-sets of Reeb chords. Define

o(s,p) = [sU (U, ME)) |\ (U; M),

where the union and difference operations are taken as multi-sets (i.e., by adding or subtracting linear
combinations to get linear combinations with coeflicients in Z). Recall that A/ is the matching of the
pointed matched circle Z = (Z, a, M). Then we say that the pair (s, g) is strongly boundary monotone
if the following two conditions are satisfied for each 7 = 0, ..., x:
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(1) The multi-seto(s, (p1,...,p;)) is a k-element subset of [24] with no repeated elements (hence is a
genuine set).

(2) The multi-sets M (p¥) and M (p ) have no elements with multiplicity greater than 1.
As suggested by the notation, this is related to the strong boundary monotonicity of a curve.

Proposition 3.33 ([LOT18, Lemma 5.53]). A curven € M(x,y;5”; D) is strongly boundary monotone

if and only if (x, [f)]) is strongly boundary monotone, where []_))] is the set of multi-sets of Reeb chords which
is given by replacing each puncture of S” with its associated Reeb chord.

A sequence p = (py,...,p,) of multi-sets of Reeb chords is compatible with a homology class B €
m(x,y) if 7B = (8] in H1(Z, a), and (x,p) is strongly boundary monotone.
Finally, one may define a so-called Maslov index ¢(8). We do not go into the definition, but note

simply that it is an integer depending only on the sequence g of sets of Reeb chords. See, for example,
[LOTIS, Section 3.3] or [Linl2, Section 1.5].

Proposition 3.34 ([LOT18, Proposition 5.69]). Let u € MB (xy;5%; f)) If x; and y; are the compo-
nents in the generators X and'y, respectively, then

g

xS =g- (Z ny,(B) + 7y, (B)) +e(D(B)) — z(ﬁ))
=1

if and only if u is embedded, i.e., if and only if /W (%,y:57; 13) has an embedded holomorphic representa-

tive. From this and Proposition 3.30, we conclude that the expected dimension of MP(x,y; S”; D) is

g
ind(B, [P]) = (Z 15, (B) + 1, (B) | + ¢(D(B)) + | P| - [ P]).

=1

Thus we may define a moduli space of embedded curves which connect generators x and y, belong
to the homology class B, and have prescribed asymptotics g as east infinity. In particular, for compatible
pairs (B, 4), define

My = | ) MB(xy; s D).
2(57) et (BP)
[P]=p
Here yemp (B, §) is exactly the formula for y(.S) in Proposition 3.34.

In general, we will always be discussing moduli spaces where (B, §) are compatible, even when we do

not specify it.

3.7 Holomorphic combs

Recall that the compactification of the moduli space M%(x, y;.) in Section 3.2 requires that we add
holomorphic buildings. This allowed the curves to “break” at # = +00. To compactify our moduli spaces

JF\/\l79 (x,y;57; P) and W (xy;57; 73) of holomorphic curves connecting x to y, we must allow the curves
to break as well. This breaking can happen at # = +oo, or at east oo, i.c., at the infinite cylindrical end
corresponding to ox.
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3.7.1 Holomorphic curvesinR x Z x [0,1] xR

The breaking at o0 is similar to the breaking in Section 3.3 via holomorphic buildings. The breaking at
east 00, on the other hand, requires that we discuss holomorphic curves in R X Z x [0, 1] X R, which we
equip with the standard split symplectic form and a fixed split almost complex structure J = /s X jp.

Such a curve differs from a holomorphic curve in X X [0, 1] X R because it may potentially have up to
four different types of ends: two at +o0 in the first coordinate, and two more at 0o in the last coordinate.
The first coordinate is our “east—west” direction; we call —oo and +o0 in the first coordinate west co and
east 0o, respectively.

We again have projection maps zs : RX Z X [0,1] XR > RX Zandzp : RXZ X [0,1] XR —
[0,1] x R.

Definition 3.35. A bidecorated source 7 is a smooth (not nodal) Riemann surface 7" with boundary
and with finitely many punctures on the boundary. Each puncture is labeled with either ¢ or w, as well as
with a Reeb chord in (Z, a).

Definition 3.36. Let 7° be a bidecorated source. Define N (7°) to be the moduli space of proper holo-
morphic maps

v:(T,0T) » (Rx(Z\2) x[0,1] xR, Rxax {1} xR)
which extend to east and west oo as dictated by the labelings of the punctures. Thatis, if the west puncture
g is labeled by the Reeb chord p, then lim,_,, (75 0#) (2) = {—00}Xp, and similarly if 7 is an east puncture.

Note that the maps in N (T°) take all of 0T to s = 1, where s is the [0, 1]-coordinate. As such, by
the open mapping theorem, every component of 7" maps to a single pointin [0, 1] X R. After all, proper
maps are closed, so if zp © v were nonconstant, then it would be surjective. Note that this means that we
do not have punctures at # = +09, so the curves in N(T°) only have east and west punctures.

We again have an evaluation map ev, : N(T°) — R for each puncture g of 7° given by v >
lim,,, (¢ o v)(2). (This limit is trivial since the z-coordinate is constant on each connected component
of T°.) We define west and east evaluation maps

evy = n evy . N(T°) - RV
qeW (T°)

and B
ev, = rl evy : N(T°) — RET),
geE(T?)

Here 177 and E are the sets of west and east punctures, respectively.

As in the context of M2(x, y;.S”), we may use these evaluation maps to cut down NN, as follows.

Definition 3.37. Let P, and P, be partitions of the west and east punctures, respectively. Define
N(T% Py, P.) = (eviy X eve) " (Ap, X Ap).
When P, is the discrete (trivial) partition, we denote N (T° Py, P.) by N (T°%P,).

In general, the moduli spaces N (T°; Py, P,) are not transversally cut out, hence not manifolds. There
is a special case, however, when all of the components of 7" are topological disks.
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Proposition 3.38 ([Lip06b, Lemma 4.1.2]). Suppose T° is a bidecorated source whose components are all
topological disks. Then, if RX Z X [0, 1] XR is equipped with a split almost complex structure, the associated

moduli space N(T°) is transversall ly cut out by the 5—equdtz'0n.

We will mainly be interested in the reduced moduli space. In particular, there is an (R X R)-action by
translation on the two R-coordinates of R X Z X [0, 1] X R. This induces an (R X R)-action on N (7).
This action is usually free. In particular, we call a holomorphic map v stable if

* atleast one component of its source 7° is not a twice-punctured disk; and
* if 7z o v is constant on some component C of 7, then C has no nontrivial automorphisms.

Ifeveryv € N(T°) is stable, then the (R X R)-action on N (7°) is free. Thus we can make the following
definition in this case.

Definition 3.39. If 7 is a bidecorated source and N (7°) is stable, then

N(T?) := N(T°)/(R X R).

3.7.2 Some examples

We will now give some names to a few particularly useful holomorphic curvesin R X Z x [0, 1] X R.

Definition 3.40. A trivial component is a twice-punctured topological disk where one puncture is

labeled ¢, one is labeled w, and both are labeled by the same Reeb chord.

Holomorphic maps on trivial components are not particularly interesting, as they are preserved under
translation of the first R-coordinate.

(,0) O (6.0) SN @? :F

Figure 3.12: A trivial component. Note that the image is the projection to X U (R X Z), which is
topologically equivalent to X. The thickened black chord is the Reeb chord p which is determined
by the labelings of the punctures. (In later figures, we will only draw the cylinder.)

Definition 3.41. A join component is a topological disk with two west punctures and one east punc-
ture. Similarly, a split component is a topological disk with two east punctures and one west puncture.
A stable curve which is entirely made up on join (respectively, split) components is called a join (respec-
tively, split) curve.

Examples are shown in Figures 3.13 and 3.14. Using the same notation, there exists a holomorphic
map v in the moduli space for a join component if and only if p, = p; W p,. Similarly, there exists a
holomorphic map » whose source is a split component if and only if p,, = p1 W ps. Such maps v are
unique up to translation in the z-coordinate.
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Figure 3.13: A join component. Note that p, = p; W p, because the boundary of the component
must be mapped to the discrete seta =2 N B.

(el:ﬁl)
\ !
!
(w, pw =p1 Y p2) — =t
)
Z KN4
(€2, 02)

Figure 3.14: A split component. Similarly, we require p,, = p1 & p5.

Definition 3.42. A shuffle component is a topological disk with four punctures, two east and two
west, which are ordered east, west, east, west around the boundary. If the two Reeb chords associated to
the west punctures are interleaved and the Reeb chords associated to the east punctures are nested, then
we call it an odd shuffle component. On the flip side, if the two Reeb chords associated to the west
punctures are zested and the Reeb chords associated to the east punctures are interleaved, then we call it
an even shuffle component.

(6.03) (w, p2)

(6,_/04 (6,_/01)

Figure 3.15: An (odd) shuffle component. Its mirror image would be an even shuffle component.
The green dot denotes a branch point.

With the notation in Figure 3.15, there exists a holomorphic map whose source is a shuffle component
it and only if o = g7, p5 = p3, p3 = pi, and p; = p;. Thus if the associated moduli space is nonempty,
then the shuffle component is either odd or even.

Definition 3.43. A holomorphic curve composed of exactly one shuffle component and some number
of trivial components is called a shuffle curve. The shuffle curve may be odd or even, depending on the
parity of the shuffle component.
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3.7.3 Holomorphic combs

Returning now to our original goal of defining a way for our holomorphic curves in /\F/slé (%,y;57; P)

and MB(x,y;S”; f)) to break at east oo, we will define a generalization of holomorphic buildings known
as holomorphic combs. As in the case of holomorphic buildings, we allow holomorphic combs with nodal
sources. Roughly speaking, the difference between holomorphic combs and holomorphic buildings is
that combs allow for a degeneration at east oo by breaking off holomorphic curvesin R x Zx [0, 1] x R—
hence our discussion of N (T°) earlier. (In fact, holomorphic buildings may be even further generalized.
Exploded manifolds, for example, give a way for such degeneration to occur in directions like “northeast
infinity.” [Parl2])

Definition 3.44. A holomorphic story is a sequence (%, vy, ..., v;) of horizontal levels, where £ > 0,
such that

* u € M5(x, y;S5”) for some Band S7;
* y € ]A\’[(Tf) for some 77;

* there is a one-to-one correspondence between E(S”) and W (T7), as well as between £(77) and
W (T?,,) fori =1,..., k — 1, which preserves the labelings by Reeb chords; and

* ev(n) = ev,(v) andev,(v;) = evy(viyy) fori=1,...,k— 1.

Intuitively, then, a holomorphic story allows our holomorphic curves to break oft at east co. The
requirements that ev(#) = ev,(v;) in REST) /R = RP(T*) /R and ev,(v;) = evy(vis1) in RETT) /R =
RW(T50) /R are so that the breaking-off at each east—west puncture pair happens at a well-defined time.

Finally, like with holomorphic buildings, we must allow degeneration at +oo.

Definition 3.45. A holomorphic comb of height V is a sequence (uj, Vily-- o5 Y kj) forj=1,..., N of
holomorphic stories. In general, we use the notation that #; is a stable curve in M5B (X}, X415 LS}D), where
Xy, ..., XN+ are generalized generators. The index ; is the vertical level.

The trivial holomorphic comb has N' = 0 and corresponds to a trivial (unstable) holomorphic
curve. We call a holomorphic comb simple if it has one level, and if that single holomorphic story is
(#,v), i.e., has £ = 1. We call a holomorphic comb toothless if it has no components at east co. (Note
that a toothless comb is basically a holomorphic building.) Finally, the spine of a holomorphic comb is
the part of it which is toothless, i.e., the sub-comb of components which map to X x [0,1] x R.

A height-N holomorphic comb U naturally represents a homology class B € 75 (xy, Xn41). In par-
ticular, if B; is the domain of #;, then B = By * - - - x By. Furthermore, at (far) east oo, we see that U has
the asymptotics of the east punctures of the v .

A schematic representation of a holomorphic comb may be seen in Figure 3.16. Note that each com-
ponent at east infinity occurs at a fixed point (5, #) € R within its level in the holomorphic building.
Furthermore, components at east infinity must be topological disks.

Now we define what it means for a sequence of holomorphic combs to converge to another holomor-
phic comb. This will define a topology on the moduli space of holomorphic combs, and hence allow us
to compactify M5 (x, y; §7).

For simplicity of notation, we will define convergence of a sequence of holomorphic c#rve to a holo-
morphic comb. The general definition is not much different.
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Figure 3.16: A schematic diagram of a two-story holomorphic comb whose first story contains
components (#1, v11, v1,2) and whose second story is (#, v21) [LOT18]. Note that the compo-
nents at east infinity all occur at a single time # (and, indeed, at a single point s € [0, 1] as well).

Definition 3.46. A sequence {#,} of holomorphic curvesin X X [0, 1] X R converges to a holomorphic
comb U if the following conditions hold.

* Let Sy be the result of collapsing the components C of the preglued domain of U for which (75 o
U)|c is an unstable map. Then {75 o #, } converges to {zs o Uls, } as a holomorphic building.

* Similarly, if Sp is the result of collapsing the components C for which (zp o U)|¢ is unstable, then
{7p o u,} converges to zp o Uls, as a holomorphic building.

* Let 7, be the translation of X X [0,1] X R by ¢ units in the R direction. Let g be a smooth point
in the spine of U. There is a neighborhood ¥ of ¢, as well as a sequence of points g, in the source
of u, with neighborhoods V, diffeomorphic to V7, such that there are numbers #, € R so that
71, © #|y, converges to Uy in the G topology.

* For sufficiently large 7, the maps #, represent the same homology class B which is represented by
the holomorphic comb U.

Recall the idea of preglued surfaces, which allow us to consider the domain of a holomorphic building
as a single Riemann surface. We may do the same thing for both nodal or smooth holomorphic combs
now. This allows us to define the following moduli spaces.

Definition 3.47. The moduli space of all (possibly nodal) holomorphic combs in the homology class B,

whose preglued surfaces are S~ , and with asymptotics x at —co and y at oo is denoted W(X, y;S7). The
closure of M?(x, y; S*) within this space is denoted M5 (x, y; S7).
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To define the compactified moduli space when we partition our punctures, note that for any punc-
tures p, g € E(S”), we may extend ev,, to

g W(X, y;S7) — [—oo, 0.

Then we can make the following definitions.

Definition 3.48. The moduli space of all holomorphic combs in M5(x, y; S*) which respect the par-
tition P is given by
MB(x,y;S%; P) = ﬂ &v,1(0).

P;epP
PgEP;

The closure of M?Z(x, y; S”; P) within this space is denoted W(X, y; S5 P). Similarly, the closure of
MB(x,y;87; D) within MB(x, y; S”; P) is denoted MB(x, y; S7; D).

Difficulties with transversality at east co make it so that we must define our moduli spaces as closures
within the space of all holomorphic combs, rather than simply as the space of all holomorphic combs (cf.

Definition 3.16. An example of when W(X, y; S5 P) is a proper subset ofm(x, y; S”; P) is given in
[LOT18, Example 5.23].

3.8 Compactification via holomorphic combs

Much as in the case of holomorphic buildings, we now have a compactness result with holomorphic
combs. In particular, we have the following theorem.

Theorem 3.49. The spaces W(x, y; S) are compact. If {U,} is a sequence of holomorphic combs in a
fixed homology class B and fixed (topological) preglued source S*, then there is a subsequence converging to a

(possibly nodal) holomorphic comb U € MB(x,y;S”). Similarly, the moduli spaces MB(x,y; S”; P) and
W(x, y; 875 D) are compact.

We will only prove the first statement, namely that W(x, y; S7) is compact. It is sufficient, as in
Section 3.4, to prove the following.
Theorem 3.50. Any sequence {n, : S, — T x [0, 1] X R} of holomorphic curves in MP(x, y; S) has a
subsequence which converges to a holomorphic comb U € W(X, y;S7).

To prove it, we need another version of SFT compactness for maps in manifolds with cylindrical ends.
In particular, recall that Theorem 3.18 was only for cylindrical manifolds of the form 7" XR. Because X has
a cylindrical end at the puncture p, however, we will need this more general version of SFT compactness.

Theorem 3.51 ([LOT18, Theorem 5.29]). If (W, ) is a punctured Riemann surface with a Lagrangian
submanifold L which is cylindrical near the punctures of W and which is embedded away from finitely
many transverse self-intersections, then the space

M, (W, LJ) N {E(F) < E}

iscompact. The notation mg (W, L, ]) refers to holomorphic buildings in W with boundary in L, domain
of topological type S, and exactly u marked points.
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Proof of Theorem 3.50. We will define the limit holomorphic comb U by defining zp o U and zs o U
separately. The former defines the “vertical” level structure (i.c., the part of the holomorphic comb which
isabuilding in [0, 1] XR) while the latter defines the “horizontal” level structure (i.e., the part of the comb
which is a building in %, thought of as a manifold with a cylindrical end at east infinity).

Step 1. Obtaining the vertical level structure. Pick generic points p, in each region » of X which are
regular values of 75 o, for all n. Let {g,,;,} = (s o 1,)7! (p») be the preimages of p,. Note thatg,,; , is
a point in the source S, of #,. Think of these points as marked points in S,,. These implicitly keep track
of the homology class B which is represented by each holomorphic curve #,, since the number of points
9»,i,n for each region 7 tells us how many times #,, crosses the 7.

We may use Theorem 3.21 to extract a convergent subsequence of {#,}, where we have added the
points g,,; , to the marked pointsets of S,,. SFT compactness applies because the maps #,, are holomorphic

maps with bounded energy: The w-energy

/ ,®(0,1]
SnU[)(_Sn)

vanishes since there is no nontrivial 2-form on [0, 1]. The A energy is the degree of the map, which in this
caseis g = g(X). (See Remark 3.9.)

Relabel so that {v,} refers to the convergent subsequence. Then {zp o #, } also converges, and thus
has alimit {zp o u,,} — 7p o U. (Note that we simply use zp o U to denote this limit. In particular, we
have not yet defined U itself.) This limit is a (vertical) holomorphic building in [0, 1] X R. Note that we
have used (J-2) to ensure that zp o #, is holomorphic. Say it has source Seo.

This gives a vertical level structure on the limit. It remains to find a horizontal level structure, i.c., to
understand the components at east co.

Let V, C X be a closed disk neighborhood of p, i.e., of east 0. (Recall that we think of ¥ as the

interior of X, i.e., as 2 Riemann surface with a cylindrical end at the east puncture p.) For small V,, we
know by (J-6) that the almost complex structure / splits:

Jvxio1xr = /5 X .

Let W, be the complement of a closed disk around p which is slightly smaller than Vs s0 that X isa union
of the interiors of Vs and W, We will find convergent subsequences over v, and W, and then show
that they agree on the overlap.

Step 2. Convergence over V). First, we tackle convergence near east infinity. Define 7, = (zg o
1,) " V), so that our maps restrict to holomorphic maps

(752 o”ﬂ)|Tn : (Tm aTn) - (V}» aV:z; Ua)-

(The @ is there because a-arcs go through p, and so zs o #,, might map a point in 87, to these arcs. Since
there are no B-curves near p, we need not include 8.) These maps have a finite energy bound, i.c., “area”
bound, since they are restrictions of maps which all represent the same fixed homology class B € H,(X).
Thus Theorem 3.51 applies.

Letting {#,} be this convergent subsequence, we have a holomorphic building (zs o U)|r defined
as the limit of (75 o #,)|7,. Note that this holomorphic building is “horizontal.” In particular, whereas
zp o U had stories at +00, this building (75 o U)|7 has stories at east co. It is a building in R X Z.
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This might introduce more components to the (presumptive) source of U, namely components
which are not seen by zp o U. Let So thus denote this new source. Define 7” to be the parts of this
new Se which are mapped away from east o0, i.e.,

T’ = S\ [(75 0 U717 ().

Step 3. Convergence over W,. Now we show that, over I, we converge to a holomorphic curve over
7”. This will define 7z o U on 7”. (Note that zp o U| 7~ was already defined in Step 1.)

First, we do this for smooth points. In particular, consider some smooth pointg € 7”7, and let X be a
neighborhood of g which is contained in 7” and which does not touch any nodes or punctures in Se.. We
would like to define 75 o U on X by finding a subsequence {75, o, x } which converges to a holomorphic
curve (7x o U)|x : X — W),. Hence {u,,x} would converge to Ulx : X — W, X [0,1] x R.

If we can do this, then we may choose a countable collection {X},} of X which covers the smooth
part of 7" and take the diagonal subsequence {#,,x,}. In particular, the resulting subsequence, which
we may denote as {#, }, converges in C;’ to U away from the collapsed curves in the source. (Recall that
S, — Swo in the Deligne—-Mumford sense. These collapsed curves are where the complex structures form
infinitely long necks, thus producing nodes in Se..)

Notice that

71'2(2 X [0, 1] X R) = 7[2(2 X [0, 1] xR, C,U C[g) =0,

so no spheres may bubble off. In particular, since bubbling occurs when the gradient approaches infinity
at a point, it follows that ||du,|| is bounded on X. Since we once again have an energy bound, we may
apply [MS12, Theorem 4.1.1], for example, to obtain a subsequence of the #, which converges to a holo-
morphic curve (75 o U)|x over X. Note that this limit may escape toward +00, as detailed in Step 1, but
has neither bubbling phenomena nor any escape toward east infinity.

This defines the holomorphic comb on 7” away from any nodes and punctures. The cases of nodes
and punctures may largely be solved by using existing compactness and convergence theorems. For nodes,
we use the energy bound on the 75 0 #,,’s again, this time apply the removable singularities theorem (e.g.,
[MS12, Theorem 4.1.2]). This means that we may extend U across the nodes. To see that it approaches
the same value from both sides of the nodes involves an argument similar to the argument in the proof
of convergence in the thin part in Theorem 3.18. One may also refer to [MS12, Section 4.7] for a similar
argument in a slightly different setting.

For punctures of U| 77, we would like to show that the map 7 o U approaches points in@Nf. (Recall
that generators x € S(H) are g-element subsets of 2 N B.) But this follows from [Flo88d, Theorem 2].

Step 4. Piecing together T and T'. We have, at this point, defined zs o U on both 7"and 7”. On
their intersection 7'N 77, we have defined the holomorphic comb U twice. These coincide because Cl‘:)oc is
Hausdorff, and thus the sequence {#,|7n77} may only have one limit. Thus we may glue U|7 and U| 7
to get a holomorphic comb U in X X [0, 1] X R which is defined on all of Se..

We claimed that this map U should still belong to the homology class B. This follows from the marked
points g,,;, which we added and which determine the domain of our holomorphic comb.

Step 5. Defining mp o U on components at east infinity. We have defined 7y on U, U I}, hence
on Se. But because we added some components to S at Step 2, we have not yet defined zp o U on
the components which only appear at east infinity. In other words, we have not defined zp o U on the
components of Se, which map toR X Z X [0, 1] X Rinstead of to £ x [0,1] X R.

We will show that zip o U is constant on each such component. Thus each escape to east infinity

happens at a fixed point (s, ) € [0,1] X R.
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Let C be a fixed component of Se, which is mapped to east co. If (zp o U)|c is stable, then this
component was already defined before, namely when we were defining the vertical level structure of the
limit. We have thus already defined a map C — [0, 1] X R. The surface Se was created by collapsing
some arcs in .S, the topological type of the decorated sources of the curves #,, so let Cy be the preimage
of C C Sw in S. Since C is mapped to east oo, it follows that 0 Cy consists of collapsing arcs and arcs in §
which map to the #-arcs under 75 0 #,,. Thus the limit zp o U takes C to {1} X R, so the open mapping
principle tells us that (zp o U)|¢ is constant.

Otherwise, the map (zp o U)|c is unstable and thus has not yet appeared in the limit. The only
unstable components at east infinity are constant in D, so it suffices to figure out which constant this
should be. To do so, we simply add marked points so that C appears in the limit. This tells us which
constant (zp o U)|¢ should be.

This defines U completely. O

3.9 Codimension-one degenerations

The compactness theorem in the previous section ensures that M2 (x, y; S”; P) contains only a few kinds
of degenerations. We are allowed to have all the degenerations which were permitted in the closed case (see
Section 3.5). The bordered case, however, gives rise to one other degeneration, occurring at east infinity.
In particular, if the source degenerates to a nodal source (i.e., to a point on the boundary of the Deligne—
Mumford moduli space of Riemann surfaces), then the holomorphic map may converge to the puncture
2 in X on one side of the node. This corresponds to a level splitting. However, instead of this splitting
occurring at +00, as in the case where the R-coordinate of the map converges to +oo, this splitting occurs
at east infinity instead.

To summarize, then, we have the following types of degeneration: (1) becoming nodal; (2) level split-
ting at either +0o or eoo; (3) level splitting with an unstable source when the derivative blows up at a
puncture; and (4) bubbling of a holomorphic sphere or disk.

Note that Case (4) does not occur. The proof is similar to the argument that bubbling cannot occur
in Lemma 3.22. In particular, neither X X [0, 1] X R nor R X Z x [0, 1] X R have holomorphic spheres, as
their 7, ’s both vanish. Similarly, since 7 (%, ) and 7, (£, 8) both vanish, so too do the relative homotopy
groups with respect to the Lagrangians C, U Cp. Thus there are no bubbled-off disks.

Proposition 3.52. Define the boundary of M3 (x,y;:57; D) to be
OMB(x, y;SD;j)) = MB(x, y;SD;j)) \ MB(x, y;SD;I_))).

If (%, B) is strongly boundary monotone and ind(B, g) < 2, then for generic J, every holomorphic comb in
this boundary may be written in one of the following forms:

(1) a toothless beight-2 holomorphic comb (uy, u,);
(2) a simple holomorphic comb (u, v) where v is a join curve;
(3) a simple holomorphic comb (u, v) where v is a shuffle curve; or

(4) a height-1 holomorphic comb (u, vy, . .., vi) such that each v, is a split curve and the preglued surface
of the v;’s is also a split curve.

58



Degenerations of the first form are called two-story ends. Formally, they are elements of
M2 (x, w; ST ]_))1) x MP (w, ;S5 ]_52),

where By * By = Band S” = ST 4S5 is a splitting of $* which divides the ordered partition P into two
parts 1_51 < 1_52. (Thus all of the degeneration to east infinity which occurs at the first level also occurs
earlier, i.e., at a smaller time #, than the degeneration to east infinity which occurs at the second level.)
Those of the second form are join curve ends. Such ends are elements of M3B(x, y; S >’ )4 ), where
S” and P’ are obtained as follows: First, pick some east puncture g from the z-th part of P which is labeled
by the Reeb chord p,. (Here 7 is some fixed number.) Decompose this chord as p, = p, ¥ p. Then let
(8”) be a decorated source with east punctures « and 4, labeled by p, and pj, respectively, such that we
may recover S” by pregluing a join component to the punctures 2z and 4. (Thus the join component has
west punctures labeled by o, and p;, and an east puncture labeled by p,.) The partition P is obtained by

replacing g with {4, b} in the /-th part of DP. In this case, we say that the join curve end occurs at level 7.

We call degenerations which take the third form shuffle curve ends. Similarly to the join curve ends,
these are elements of M%(x, y; S™; P') where S” may be recovered by pregluing a shuffle curve to S*’
and P’ is obtained by replacing two punctures from its z-th part with a different two punctures which
belong to ' > We say that the shuffle curve occurs at level 7. We may distinguish between odd and even
shuffle curve ends, depending on whether the degenerated shuffle curve is odd or even.

Finally, the degenerations which are formed by degenerating split curves are a special case of colli-
sions of levels. A collision of levels 7 and /+1is an element of M?(x, y; S™'; 7)’) where P = (Py,..., P
Pist,..., P,). The decorated source S™ is obtained as follows: Contract arcs on 45~ which connect
punctures in P; and Py which are labeled by abutting Reeb chords. Replace these pairs of Reeb chords
by their join, and let P; & P, comprise these joins. In general, we may have collisions of levels 7 ..., 7 +.
These correspond to degenerating several split curves.

We do not prove Proposition 3.52, and instead refer the reader to Proposition 5.43 and Section 5.6.3
of [LOT18]. The former restricts our degenerations to the four types highlighted above, as well as some
potential nodal degenerations. The latter proves that in the strongly boundary monotone case, there are
no nodal degenerations at all.

Unfortunately, we do not have the necessary transversality or gluing results to conclude that the mod-

— . 5 =2
uli space M?Z(x, y; S7; P) is a genuine manifold. This is owing to difficulties when we degenerate shuffle
curves or split curves. There is a one-dimensional moduli space of shuffle curves based on where the

branch point occurs, as in Figure 3.17, so shuffle curve ends are not isolated. If M5B(x, y;S”; I_S) were a
manifold with ind(B, g) = 2, then its ends, which would be ends of a 1-dimensional manifold, would be
isolated. o

Though we do not have the result that M2 (x, y; $™; ]3) is a compact 1-dimensional manifold, we do
have the following result, which is sufficient for defining our bordered invariants.

Theorem 3.53. When ind(B,g) = 2, the total number of two-story ends, join curve ends, shuffle curve
ends, and collisions of levels is even. (In fact, there are an even number of even shuffle curve ends, so the
total number of two-story ends, join curve ends, odd shuffle curve ends, and collisions of levels is zero.) In

particular, the boundary dMPB(x,y; S5 D) bas an even number of points.

Finally, it is useful to highlight the index-one case as well. The proof is very similar to the closed case.
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Figure 3.17: The dots in the diagram above depict branch points. By moving the branch points,
we obtain a one-dimensional moduli space of shuffle curves. When the branch point is on the
boundary, there is a branch cut (the green segment) between the two branch points. We can also
approach the other red boundary component.

Proposition 3.54. With a generic choice of almost complex structure, the moduli space MEB(x, Y; 7)) isa
compact O-dimensional manifold if ind(B,g) = 1.

3.9.1 Examples of degenerations

Example 3.55. Consider Figure 3.18 below. Here, the black arc is part of the boundary A, the red lines

Figure 3.18: A small neighborhood of a Heegaard diagram, where red lines denote 2-arcs and blue
lines denote B-curves, as usual. (Note that, in principle, some of these a-arcs could be the same.)

are parts of a-arcs, and the blue line is part of some j-circle. We draw our basepoint z somewhere on the
part of A which is not depicted, i.e., between ¢ and .

There is a 1-parameter family connecting the generator {#} to the generator {c} with asymptotics at
east infinity given by ({12}, {23}). This family may be seen in Figure 3.19. Thus east punctures must

Figure 3.19: A 1-parameter family in M? ({a}, {c}; {p12}, {p23}). Here B is the shaded region,
i.e., the sum of the rectangles By = 12ba and B, = 23cb. We have drawn the projection 7y o «,
where green dots and lines denote branch points and cuts.
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approach p;, before p23.

This moduli space has index two, and is parameterized by the branch point. As such, one end occurs
when the branch point approaches 4. This corresponds to a curve which maps to the two rectangles B;
and B, at increasingly distant times. In other words, we have a holomorphic building at this end, as on
the left side of Figure 3.19. This is an element of

MP({a}, {b); (p12)) X MP ({0}, {e}s (p23)),

and is thus a two-story end.

On the other hand, if the branch point approaches the pointlabeled 2 on 0, then we obtain another
end. This end corresponds to degenerating a split curve whose west puncture is associated to the Reeb
chord pi3. In particular, we see the split curve in Figure 3.20. In our previous language, this is a collision

: 4 .

b 2

: N N

Figure 3.20: Letting the branch point escape to east infinity degenerates a split component.

of levels 1 and 2, and is thus an element of MZ({a}, {c}; (p13)).

Thus we have exactly two ends in this case, which makes sense in light of Theorem 3.53.

Example 3.56. Now consider Figure 3.21. This has four generators, namely {4, ¢}, {4, d}, {6, c}, and

Figure 3.21: In this local picture of a Heegaard diagram, let By be the lower rectangle 12642 and B,
the upper rectangle 34dc.

{b, d}. There is a moduli space of curves from x = {4, c} toy = {4, d} with asymptotics at east infinity
given by the sequence ({p12}, {£34}). This moduli space is index 2 and is parameterized by evs4 — evi,
i.e., by the difference in evaluations between the two east punctures.

From this description, we see that this moduli space has two ends. One is a two-story end, which
occurs when we encounter the Reeb chord p34 infinitely far away from the Reeb chord pi5. It belongs
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to the product MBi(x, {b, c}; {p12}) X MPB2({b, ¢}, y; {p34}). The other is a collision of levels, which
occurs when evss, = evyp. This is an example of a collision of levels which does not degenerate a split
curve. Instead, this end is a genuine holomorphic curve, but simply belongs to another moduli space,

namely MPB*52(x, y; {01, p34}) instead of MP*B2(x, y; {p12}, {p34})-
Example 3.57. The generators of Figure 3.22 are {4, d}, {4, ¢}, {b, ¢}, and {b, ¢}. Consider the moduli

Figure 3.22: A third local picture.

space connecting generators {4, d} and {b, ¢} with the Reeb chord p;3. This is an index-two moduli

Figure 3.23: A 1-parameter family of holomorphic maps in the moduli space. The green point is
the branch point, while the green line denotes a branch cut.

Figure 3.24: Degeneration occurs when the branch point approaches either 2 or c. When the
branch point approaches 2, we degenerate oft a join curve.

space. There is a 1-parameter family of holomorphic maps, as shown in Figure 3.23, which belong to
this moduli space. As the branch point approaches ¢, however, we degenerate a two-story holomorphic
building with one level going from {4, d} to {4, c} with no east punctures, and one level going from {4, ¢}
to {4, ¢} with east puncture labeled by the Reeb chord py3. As the branch point approaches the point 2
on 8%, the curve degenerates a join curve with west punctures labeled by p1» and p,3 and east puncture

labeled by pi3. See Figure 3.24.
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Figure 3.25: A more complicated example which shows how a shuffle curve may degenerate. Note
that Dy is shaded more darkly, to denote that B has two copies of D.

Example 3.58. We now give an example in which a shuffle curve may degenerate. In Figure 3.25, we show
the projection 7y © # of some # € ME({a, e}, {6 g}s {p23, p14}), where B = Dy + Dy + D3 + 2Dy + Ds.
Note that the partition dictates that we approach p3 and py4 at the same time.

In Figure 3.26, we show one possible degeneration, which occurs when the interior branch point
approaches the boundary. In particular, on the left, we have a “typical” element of the moduli space.

Figure 3.26: Elements of the moduli space MZ ({4, ¢}, {¢ g}; {23, p14}), where B is as indicated
by the shading.

As the branch point nears the segment between ¢ and 2, it forms a branch cut with two boundary
branch points (cf. Figure 3.17). We may move these branch points, and the corresponding branch cuts,
such that they pass through the concave corner between b, ¢, and d, as in Figure 3.27.

This results in a degeneration into a two-story holomorphic building. In particular, we have one story
belonging to MBr({a, e}, {b, d}; 0), where B; = D; and we have no east punctures. The second story
belongs to MP2({b, d}, {c g}s{p14 p23}), where By = Dy + D3 + 2D, + Ds.

There is another type of degeneration, which occurs when an interior branch point (or two bound-
ary branch points) approach d%. This degenerates an odd shuffle curve, as shown in Figure 3.28. In
particular, this is an element of MZ ({4, ¢}, {¢ g}; {13, 24 })-
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Figure 3.27: A schematic depicting how the branch cut may be made to look like the right side of
Figure 3.25. We have drawn slits of nonzero width, as opposed to simply indicating cuts.

Figure 3.28: A shuffle curve degenerates in the cylinder R X Z x [0, 1] X R.
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Chapter 4

Bordered Heegaard Floer homology

Like an old stone wall that’ll never fall
Some things are always true
Some things never change

“Some Things Never Change” from Frozen 2

With all the geometric details about moduli spaces out of the way, we can now—finally!—define
bordered Heegaard Floer homology. There are two modules associated to the bordered Heegaard Floer
package, namely the “type A module” CEA (Y) and the “type D module” @(Y ). The former is an
object known as an “As module,” while the latter has an associated “type D structure.” Both bordered
Heegaard Floer modules are defined, in some sense, by counting curves in the moduli spaces MB(x, Y; 7))
defined in the previous chapter (cf. Section 2.5, which informally discusses this idea in the closed case).
Exactly which curves they count, however, differs, and corresponds to their diftering algebraic properties.

This chapter will be mostly concerned with defining the relevant algebraic notions, and showing
how they correspond to the geometric objects (i.e., the moduli spaces) we have seen before. We begin in
Section 4.1 with a somewhat preparatory section in which we discuss A structures. These structures will
form the algebraic framework for our type A module, which is an .4, module over a certain differential
algebra. In Section 4.2, we define this differential algebra. This algebra, denoted A(Z), is associated to
the pointed matched circle Z = 9H associated to a bordered Heegaard diagram. With these ideas in
place, we turn in Section 4.3 to the definition of the type A module C"FE(H) associated to a bordered
Heegaard diagram. It turns out that this module is a 3-manifold invariant.

In Section 4.4, we define type D structures. These are a somewhat more novel algebraic notion
than A structures, and were in fact defined expressly for bordered Heegaard Floer theory. We define
CFD(#H), which is also an invariant of the bordered manifold represented by H, in Section 4.5. The type
D module will be a /eft A(Z) module, equipped with a type D structure. We conclude in Section 4.6
with a discussion of the pairing theorem. This combines Heegaard Floer homology with both bordered
Heegaard Floer objects. In particular, it says that a suitable pairing of CFA (Y1) with @(Y >), where
0Y, = 0>, recovers the Heegaard Floer homology HF (Y) of their union Y7 Uy Y>.
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4.1 A, algebras and modules

The bordered invariant CFA (Y) = CEA (H) is an A module over a differential graded (dg) algebra
A(Z) associated to the pointed matched circle Z = dH. Assuch, before defining CEA, we will introduce
in this section some details about A structures, which were first introduced in 1963 by John Stasheft
[Sta63a, Sta63b]. Since then, A algebras, categories, and tensor products have all become part of the
typical algebraic toolbox in symplectic geometry [Fuk93, Sei08, FOO'09]. A more detailed exposition
of this algebraic background may be found in [Kel01].

Let k denote some fixed commutative ring of characteristic two. (Usually, this will be some direct
sum of copies of Fy = Z/27Z.)

Sometimes, an associative k-algebra comes as the (co)homology of a chain complex (4, ) that one
expects to have the structure of a differential algebra, i.e., to admit some multiplication z : 4 ® 4 — 4
which is associative and which satisfies the Leibniz rule. (Unless otherwise specified, all tensor products
are over k.) But it sometimes occurs that x is only associative up to a homotopy, i.e., there exists a map w3
such that when a1, 45, a3 € A are closed (i.e., da; = 0), we have

(p(ar ® az) ® a3) + (a1 ® u(az ® a3)) = Ops(a1 ® az ® a3).
If 43 now only satisfies associativity up to homotopy, then we get further maps p4, and so on.

Definition 4.1. An A, algebra over k is a k-module 4, along with multiplication maps y; : A% — 4
for 7 > 1. The multiplication maps satisfy the following compatibility condition:

n—j+l1
Z Z pi(a1 ® - ®ap; ®/£j(ﬂ( ®-® ag+j_1) Qap;® ® a,) =0.
i+j=n+l (=1

We denote the Ay algebra by A, and call its underlying k-module 4.

Note that an A, algebra comes with a map y; : 4 — A as well. This is the same as the map J in the
case that 4 comes from a chain complex (4, d). When working over general k, we actually require that
A is a graded k-module. The compatibility condition then comes with certain signs. In this context, g;
is a differential, so that an A, algebra with ; = 0 for 7 > 2 is simply a chain complex. Similarly, if our
only nontrivial multiplication maps are ¢; and u, then A is a differential graded algebra.

It turns out that the algebraic structures defined below in the bordered Heegaard Floer package may
all be equipped with a grading by a certain noncommutative group. We will not spend time defining this
grading. As such, we define our A objects without grading, noting simply that this is okay because k
has characteristic two.

We say that A is strictly unital if there is an element 1 € A such that u,(4,1) = ¢2(1,4) = 2 and
pi(a1 ® - ®a;) = 0if 7 # 2and 4; = 1 for some j. We say that it is operationally bounded if x; = 0
for all but finitely many 7.

There is a graphical representation of the compatability condition in Definition 4.1. In particular,
think of 4%’ as being denoted by 7 parallel, downward-oriented strands. Let p; be represented by the 7
strands of A%’ meeting at a “vertex,” which we label by #;, and exiting as one strand below. For example,
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u3 may be denoted by

A/

M3

|

The compatibility condition on 4* is obtained by summing over all ways to use two ;s to get from
parallel strands to one single strand. For example, the compatibility condition for u3 says that

I | / \i / \‘ ! N Nl | | e
M1 M1 #“1 “3 K2 H2
\\ + | + / + l + Nyt =0.
“3 “3
v v

M3 M1 12%) M2
! ! ! !

The last two terms are exactly the usual associativity terms, while the first four are the homotopy up to
which u; is associative.

A more concise way to draw these diagrams is to combine all the multiplication maps into a single
map

@ TH(A) = @A@n 4
n=0
on the tensor algebra. By convention, zo = 0. There is now an endomorphism D on T*(A) defined by

n n—j+l

Z_)(a1®---®ﬂn):z Z a1 @ ®ap-1®ui(ar® - Qap;1) ® - ®ay (4.1)
—

Then the compatibility condition for A algebras may be written as z © D = 0 or, equivalently, as
Do D = 0. Graphically, we use doubled arrows to indicate elements of D and single arrows, as before, to
indicate elements of 4. Thus we may depict this relation as

’
<
N

or

Ol <

We have discussed Ac, algebras, but in fact the invariant CFA is an Ac module over some algebra.

(In fact, it is a module over a differential graded algebra. In particular, we do not need all the details of
Ao algebras.) We define this next.

67



Definition 4.2. A (right) A, module M over an A, algebra A is a k-module A1 with operations
my s M@ A S A1
forall 7 > 1. We ask that these maps satisfy the following compatibility condition:

0= Z mi(mi(xX@a;® - ®a;1) ®a; ® @ ay1)

i+j=n+1

ny
+ Z Z Mm(X® a1 ® @ ap1 ® ui(ar® @ ap1) ®apj1 ® - ® dyy).

i+j=n+l (=1

If M is an A module over a strictly unital A, algebra A, then we call M strictly unital if, for
every x € M, wehave mp(x ® 1) = xand m;(x ® 41 ® -+ ® 2;-1) = 0if 7/ # 2 and some 4; = 1.
Furthermore, we say that M is bounded if 72, = 0 for all but finitely many 7.

We may draw a similar graphical representation for M4 x4 ®(=1) a5 for A%, The only difference is that
we now distinguish the leftmost strand, which represents our factor of M in the module, by drawing it
as a dashed line instead. The output of m; is an element of M, hence is also “colored” by M4, i.e., drawn
as a dashed line. For example, 723 may be drawn as

\ l/
\
\
4
ms .

v

In our context, where y; = 0 forall 7 > 2, the module compatibility condition may be written as

0= Z m,‘(mj(x®al®---®aj_1)®ﬂj®---®an_1)

l’+j=7L+1 1
.
Y (@M @ ®ary ® () ®an ® - ®a, ) (4.2)
=1
n—2

+ Z My 1(X@ a1 ® - ®ap_1 ®ur(ar®ap) ®aps ® - ®ay ).
¢=1

For m3, this is drawn as

|
|
v
my )

\ \ \ \ |

\ \ \ \ |

\l \l/ \ l \ l |

\ \
ms3 W \ “ : H“2
\ | \ \ |
N + | + l + \ + \ / + / =0
\ \ \

\ {
ms my m ms3 ms my

| | | | | |

| | | | | |

% % % v % ¥

We may again write this in terms of the tensor algebra. Let A : T*(A4) — T"(4) ® T"(A4) be the
comultiplication map

Aay® - ®ay) :Z(d1®-~®dm)®(am+1®~~-®ﬂn).

m=0
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Then we may draw the compatibility condition for A modules as follows:

/7 /

A _
D

/ + / =0.

|

Tt will turn out that CEA (Y) is defined up to homotopy equivalence. To understand the A, version
of (chain) homotopy equivalence, we must first understand whata homomorphism of A, moduleslooks

like.

- - <«—————-

Definition 4.3. A (strictly unital) A, homomorphism between the strictly unital right A, modules
M and N over a strictly unital A algebra A is a collection of maps f; : MM ® A1 — Nfori > 1 which
satisfies the compatibility condition

0= Z n(f(x®@a1® - ®a;1) ®a;® - Qay1)

i4j=n+1
+ Z Jim(x®a1® - ®a;1)®a;® - ®a,1)
i+j=n+l1 nej
+ Z Zﬁ(x@al ® - ®ap1 ®ui(ar® "'®d[+j_1) ®d€+j®"'®dn_1),
i+j=n+l (=1

where 7; are the multiplication maps of N , as well as the unital conditions f1(157) = 1y and
ﬁ(X@éZl .- ®dl‘_1) =0

if / > 1and some a; = 14.

Graphically, this compatibility condition may be drawn as

7 7

A A

) .

ol

+
P
+

N e

|

|

|

|

|

|
A\
m

|
\I(

v v

Here, we use dashed lines to represent elements of M. Dotted lines represent elements of M.

69



Consider, for example, the identity homomorphism I v of a strictly unital A module M. It is de-
fined by setting (Ixrq)1(x) := xand (Ipq),(x ®A®UD) = 0 forall7 > 1. Thisisan Ae homomorphism.
The composite of A, homomorphisms f : M — N and g : N’ — P is given by

(gof)(x®a1 ® - ®a,1) = Z G(fi(x®a1® - ®a;1)®a;® -+ ®a,-1).
i+j=n+l
A strictly unital homomorphism is bounded if f; = 0 for all but finitely many 7.
Recall that, in the typical (i.e., not Ac) setting, a chain homotopy between /" and ¢ is a family of maps
b; such that f; — g; = db;_; + b;1d. (The differential 4 is similar to the map g;.) The A version of this
should be this equality, up to a certain homotopy involving higher multiplication maps. Indeed, we may
make the following definition.

Definition 4.4. Let M and M’ be strictly unital A, modules over the Ay algebra A. Consider a
collection of maps

b+ M ® A% — A1
with h;(x ® 21 ® - - - ® a;-1) = 0 whenever 7 > 1and ; = 1 for some j. Then define f,, by

i (x®@a1® - ®a,y) = Z hi(m(X@a1® + ®aj_1) ®a; ® -+ @ dp)
i+j=n+l1
7
+ Z m(h(x®@a1® -+ ®a;1)®a;® - ®ay1)

i+j=n+l1

n-j
+ Z Z/ol-(xtxuzl ®  ®ar ®u(a® - ®ap1) ® - ®d,).
z'+j=n+1 /=1

This map £ is an A homomorphism, and we call it nullhomotopic. Two maps f,¢ : M — M’ are
homotopic if / — g is nullhomotopic. Finally, if there are maps f : M — M’"and g : M’ — M such
that g o f and f o g are homotopic to the identity homomorphisms I x4 and Ir, respectively.

This definition is somewhat convoluted, but is related to the typical definition of chain homotopy as
follows: One may upgrade the maps 7 = {m;} to an endomorphism 7z of M ® T (A4). This definition is
analogous to the definition of Din the Ao algebra case. Similarly, we may promote the homomorphisms
f and g, as well as the homotopy 5, to rnapsf, I b MeT* (A) > M ® T*(A). Then the condition

in Definition 4.4 may be written as
7)0%+W052f+§.
This looks exactly like the condition for 4 to be a chain homotopy between chain maps / and g.
The condition that f, ¢ : M — M are homotopic is represented graphically as follows:
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We conclude with the definition of the A« tensor product, which will be useful for stating the pairing
theorem (Theorem 4.44).

Definition 4.5. Let A be an A, algebra over k, M aright A, module over A, and NV aleft Ae module
over A. Then their A tensor product is the chain complex

MRIN =MQT AN

with differential 0 defined by

n+1
I(x®a1® - ®a,®Y) ::Zm,'(x®al®~--®ﬂl'_1)®al-®--~®dn®y
=1
n n—i+l
+Z Z X@a1 ® @ uia;®  ®apiy) ® ®an®Y
=1 ¢=1
n+l

+ Zx a1 ®  ®ayis1 @mi(ay—42® - ®a, Y).
=1

4.2 The algebra associated to a pointed matched circle

In this section, we define the algebra A(Z) which is associated to a pointed matched circle Z. In fact,
this algebra is a differential graded algebra, but, as usual, we will not discuss the grading. The bordered
invariants will be modules over this algebra.

To define A(Z), we must discuss the strands algebra A(#, £). A strand diagram with » places and
k strands is created as follows: First, on both the left and right side, one draws 7 dots numbered 1 (at the
bottom) to 7 (at the top). Then a strand diagram is obtained by drawing a set of & strands going up and
to the right such that no two strands cross more than once and no two strands can have either the same
start or end. Consider, for example, the diagram

5@

which is an element of A(S, 3). Note that horizontal strands are permitted, but not strands which go
down and to the right.

Definition 4.6. The strands algebra with 7 places and # strands, denoted A(7, k), is the F>-vector
space generated by these strand diagrams. The strands algebra A(7z) with 7 places is the direct sum

A(n) = B A &).
k=0

That this is an algebra, and not merely a vector space, requires that we define a multiplication on the
strands algebra. When the concatenation of z and & is defined (i.e., when the right side of 2 matches the
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left side of &) and when the juxtaposition of the two diagrams has no twice-crossing strands, we declare
a - b to be this juxtaposition. Otherwise, we declare the product to be zero. In particular, if the fragment

appears, then the product is zero.

There is a boundary operator defined on the strands algebra as follows: There is a unique way to
smooth a single crossing in a strand diagram, namely by

The differential of a strand diagram is then the sum of all ways to smooth a single crossing, where we
declare terms with twice-crossing strands to be zero. For example, we have

5@ S 5@ S 5@ S
4@ 4 4@ 4 4@ 4
3 3 > 3 3 + 3 3+

[ D1 1 o1 1 o1

The first term on the right-hand side vanishes. Note that strand diagrams without crossings have difter-
ential zero.

Lemma 4.7. With the multiplication and boundary operators as defined above, the set A(n, k), and hence
also the direct sum A(n) = P A(n, k), is a differential algebra.

Proof. Consider the algebra A(n, k) > A(n, k) which is the F,-vector space generated by strand diagrams
where we do not set diagrams with twice-crossing strands to be zero. (We still do not allow isotoping away
such double crossings.) Then A(n, k) is a differential algebra, and the sub-vector space Ay (n, k) which is
generated by all terms with at least one double crossing is a differential ideal. (See Lemma 3.1in [LOT18]

for details.) Since A(n, k) = A(n, k)| Ay(n, k), the result follows. O

ToasubsetS C {1,..., 7}, we may associate an idempotent /(S) consisting of a horizontal strand at
each 7 € S. For example, the following is the idempotent /({1, 3, 4}) forn = S:

5@ [ >}
4O—@4
306—@3
2@ o2
10—O1.

Remark 4.8. There is an equivalent way of thinking about the strands algebra. In particular, we may
think of a strand diagram in A(#, k) as representing a partial permutation ¢ : § — 7 between two
k-element subsets of {1,..., z} such that ¢(7) > 7 for every 7 € S. For instance, the element of A(S, 3)
above may be thought of as the permutation 1 — 5,2  3,and 4 - 4. We may denote thisby ( 1 2 4 ).
We will sometimes use this notation, as well as the notation (S, 7; ¢), for convenience. Idempotents, for

example, take the form (S, S, ids).
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Now we may define the algebra associated to a pointed matched circle Z = (Z, a, 4, z). Recall from
Section 2.2 that a pointed matched circle comprises a circle Z, some set of pointsa = {4y, ..., 44} on Z,
a2-to-1 matching M : a — {1,..., 2k}, and a basepoint z € Z \ a. Furthermore, recall from Lemma 2.8
that the boundary 0H of a bordered Heegaard diagram is a pointed matched circle whose matching is
determined by which @-arc an intersection pointa N 9% belongs to.

Fix a pointed matched circle Z. Without loss of generality, say that the basepoint z lies between a4,
and 4; and Z is oriented to go from a; to a;41, so that we may think of Z \ a as a line with 44 points
labeled, in order, by 43, . . ., 24%. These will be the dots on either side of our strand diagram; strands in the
diagram will then represent Reeb chords.

Recall our terminology of nested, interleaved, and abutting Reeb chords from Section 2.2. Recall
also our definition of a consistent set of Reeb chords, i.e., asetp = {py,..., ﬁj} of Reeb chords such that
thesetp™ = {p[,..., z } of initial endpoints and the setp™ == {4, ..., J?L} of final endpoints both have

exactly 7 elements.

Definition 4.9. Let p be a set of Reeb chords. It may be considered as a strand diagram with strands
from p~ to p*. The strands algebra element associated to p, denoted 2¢(p) € A(%) is defined to be
the formal sum of all the ways to add horizontal strands to this diagram such that the result is still a strand
diagram. For example, the if p is the one-element set consisting of the Reeb chord from a; to a4, then its
associated strands algebra element is

4@ 4 4@ 4 4@ 4 4@ 4
3@ o3 30 o3 3 3 3 3
+ + +
2 o2 2 o2 2 o2 2 o2

10 [ D 10—01 10 [ D 10—O1.

If p is not consistent, then 2o (p) = 0.

These elements 4 (p), as well as the idempotents /(S) with S C a, generate A(4%). In particular, the
strands algebra A(4k) has basis as an F,-vector space given by terms of the form 7(S)a (p).

The algebra A(Z) associated to a pointed matched circle Z with a = {4y, ..., a4} is a subalgebra of
A(4k). A section of the 2-to-1 matching M over a subsets C {1,..., 2k} is a subset of a which maps
bijectively to s under M. In other words, because A associates each intersection pointz; € 2 N > with
the arc zzj‘? which contains 4;, a section over a subset s of a-arcs consists of an endpoint of each arc in s.
The idempotent associated to s is the sum

I(s) = Z 1(5).

S is a section over s

For example, if £ = 1 and M is the matching associated to the Heegaard diagram of the genus-1 handle-
body, i.e., M(a1) = M(a3) = 1and M(ay) = M(as) = 2, then the idempotent associated to {1, 2}

18

4@ 04 4@ 04 4@ 04 4O0—O4
30 o3 + 30—@3 . 306—@3 . 3@ 3
20——02 20 o2 20——O2 20——02
10—01 10—01 10 [ D 10 ( )%

The ring of idempotents associated to Z is generated by /(s) for all subsets s of {1,...., 2k}. This ring
is denoted Z( Z) and has unit
L= > I(s).
sc{L,....2k}
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Another way to draw the idempotent /(s) is to draw the matching on the side of the strand diagram,
and to draw dashed horizontal lines at each «; with M () € s. The example above can be written as

4@----—-@4
3@------93
2092
10-----®1,

The dashed horizontal lines indicate that the chord appears in exactly half of the terms in the sum.

Definition 4.10. The algebra associated to a pointed matched circle Z, denoted A(Z), is the sub-
algebra of @?fo A(4k, 7) which is generated (as an algebra) by Z(Z) and Lz (p)I for every (consistent)

set of Reeb chords p. The algebra element associated to p is Iz (p)I. It is the projection of ¢ (p) to
A(Z), and is denoted by a(p). Finally, define the parts of weight 7 to be

A(Z,7) = A(Z) N A(4k, k+7) and I(Z,7) :=1(2) NL(4k k+7).
Thus our algebra decomposes into the parts of weight 7 for —k < 7 < £.

It is not too hard to show that A(Z) is closed under multiplication.

In the previous section, we considered algebras and modules over a ground ring k. We consider A(Z)
to be an algebra over the characteristic-two ring k = Z(2).

The algebra A(Z) has a (vector space) basis over F, given by all nonzero elements 7(s)a(p). Using
our dashed-line strand diagrams for /(s) from above, we may draw these elements as the strand diagram
for p, along with 2|s| dashed horizontal lines representing s. We may also write them in two-line notation
as

[ o™ ) =1 ({M (), M(z))}) alp)

where p consists of the 7 Reeb chords which begin at x; and end at y;.

4.3 The type Amodule CF4

Fix a bordered Heegaard diagram H = >z B, z) which is provincially admissible as in Definition 2.20.
Let Z = 0°H be a pointed matched circle (cf. Lemma 2.8).

Then, in this section, we will finally define our first invariant, namely the type A module CFA (Y).
We begin in Section 4.3.1 with the definition of this module. Then in Section 4.3.2, we provide many
examples and eventually prove the fact that this module is in fact an A module over A(Z). Finally,
we state an invariance result in Section 4.3.3, which tells us that we the right A, module CEA (H) over
A(Z) is, in fact, a bordered 3-manifold invariant.

Remark 4.11. As a brief aside, it turns out that A(Z2) is not an invariant of the surface F(Z) which
is specified by the pointed matched circle. In fact, if Z and Z” are pointed matched circles representing
diffeomorphic surfaces, then in general A(Z) and A(Z’) do not have the same rank. But there isa derived
equivalence between the module categories of A(Z) and A(Z"). See Theorems 1 and 9 in [LOT15].
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4.3.1 Definition of the type A module

The type A invariant C@(’H) is generated, as a vector space over [, by the generators S(H) of the
bordered Heegaard diagram. Recall that o(x) = {7 : x N af # 0} C {L,..., 2k} is the set of a-arcs
which are occupied by some x;. (Since the X’s here are generators, and not merely generalized generators,
we know that each a-arc contains at most one x;.)

For each x € S(H), define I4(x) = I(o(x)) € A(Z,0). Then we may define a right action of
Z(Z) on @(H) as follows:

0 otherwise.

e I(s) {JA(X) if's = o(x),

This is only nontrivial if s has £ elements, i.., if /(s) € A(Z,0). This action extends to an action of
A(Z) on CEA(H) which is trivial on summands A(Z, 7) with 7 # 0.

We would like to define multiplication maps
Mus1 : CFA(H) ® A(Z)" — CEA(H).

The tensor products above are all over k = Z(Z). It turns out to be sufficient to define 2,41 only on
basis elements x®4(p;) ® - - - ®a(p,,) such that, with g denoting the sequence (py, .. ., p,,), the pair (x, g)
is strongly boundary monotone as in Definition 3.32. This is thanks to the following lemma.

Lemma 4.12 ([LOT18, Lemma7.2]). Letx € S(H) andp = {p1, ..., pn} be a sequence of nonempty sets
of Reeb chords. Then (X, g) is strongly boundary monotone if and only if

Ly(x) ®a(p) ® --- ®a(p,) # 0.

This means that, in order to define 72,41(x, 2(p1),...,a(p,)), we may use the associated source-
independent moduli spaces MEB(x, y;f) from Section 3.6. (Here, and later on, we use commas to separate
the tensor factors which are inputted into 72,,4.)

Definition 4.13. Let/ be an almost complex structure on X X [0, 1] X R which is admissible, in the sense
of Definition 3.26, and which achieves transversality, so that Proposition 3.29 holds. Letg = (py,...,p,)
be a sequence of nonempty sets of Reeb chords. If (x, #) is strongly boundary monotone, then make the
following definitions:

M alp)s.ap)) = >y # (M) y

yEGS(H) Bem(x,y)
ind(B,3)=1
my(x,I) == x e

M (X, a(p1)....L...,a(p,)) =0 ifn>L
Here Iis the unit of the ring Z( Z).

For convenience, we will sometimes denote 721 (x) by 0x and m,(x, 2) by x - 2. Note that this 0 is
different from the differential d which makes A(#) into a differential algebra. Note also that nonzero co-
efficients 7; (x) come from curves in M?(x, y; 8) where g = 0. Since g is a partition of the east punctures,
this means that 72;(x) counts curves which do not have any east punctures, i.e., which do not approach
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d%. The coefficient of a generator y in 7 (x) is given by the number of provincial holomorphic curves
connecting X to'y.

With these multiplication maps, 5]34(7—[) becomes a strictly unital right A, module over A(Z).
Before we show why these maps 72,41 fulfill the compatibility condition for an A module, we verify
that the definitions make sense at all.

Lemma 4.14. If H is provincially admissible, then the sum appearing in the definition of my4 is finite.
If H is in fact admissible, then m,1 = 0 for all but finitely many n. (Thus the type A structure will be
operationally bounded.)

Proof. There are only finitely many generators y € S(H) in the first place. By Lemma 3.11, we know
that any B with M?(x, y;8) # 0 must have B positive. But provincial admissibility implies by Proposi-
tion 2.23 that there are only finitely many positive classes B € 75 (x, y) whose boundary on 9% is given by
some predetermined Reeb chordsg. Thus the sum is finite. The number of elements in each M (x, y; 8)
is finite thanks to Proposition 3.54. (Recall that compact 0-dimensional manifolds are just finite sets of
points, after all.)

To show the second statement, let |B| be the sums of all the local multiplicities of the regions in X.
Recall that 72,41 is only nonzero when g consists of 7 nonempty sets of Reeb chords. Then the only
nonzero terms in 72,4, must involve homology classes B with |B| > n. After all, the sum of the local
multiplicities of such B at the regions adjacent to 9% should be . But recall by Proposition 2.24 that, for
any two generators X and y, there are only finitely many positive domains which connect them. Again,
there are only finitely many generators, so for all [B| > N for some large N, the moduli space M? is
empty. Thus 2,4 = O forallz > N. O

Remark 4.15. Recall from Remark 2.25 that 7, (X, y) is nonempty if and only if x and y induce the same
spin‘ structure. This means that the moduli space M®(x, y;8) is nonempty only if s, (x) = 5,(y), so we
may decompose CEA (H) into P CEA (H, s), where s ranges over all spin‘ structures on the 3-manifold
Y represented by H and where CEA (H, ) is the part of CEA which only involves generators that induce

the spin® class . This is useful for constructing a grading on @, but we will not spend time on this
detail here.

4.3.2 Compatibility with the algebra

We have thus defined CF4 (#H), though we have not actually shown that it is actually an A, module over
A(Z). In fact, we have the following statement.

Theorem 4.16. If H is provincially admissible and Z = OH, then (@('H), {ml}) is a (right) Ae
module over A(Z).

To prove this theorem, it suffices to prove Equation (4.2). Roughly speaking, this amounts to count-
ing the ends of the index-2 moduli spaces. In particular, the terms in the A compatibility equation
correspond to a given type of end, so Theorem 3.53 implies the compatibility.

Before explaining which terms correspond to which end, we provide a few examples which suggest the
more general argument for compatibility and give geometric intuition for the A compatibility equation.
Compare these examples with Examples 3.55 to 3.58.
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Figure 4.1: The local picture in Example 4.17.

Example 4.17. Consider Figure 4.1. The CFA module of this local picture has three generators, namely
{a},{b},and {c}. Therelevant generators of the strands algebra are [ ! ] , [ Z ] ,and [ : ] . (In Example 3.55,
we denoted the Reeb chord [ ! ] , for example, by p15.)

There are two regions in Figure 4.1, namely the rectangle 1264 and the rectangle 23¢b. Both regions
touch 8% and hence are not provincial. Since 7; = 9 counts provincial domains between generators,
this means that 0 is trivial: 0{a} = {4}, for example.

The compatibility condition for 72, says that

Ox-p+x-0p+0(x-g) =0

for any generator x and Reeb chord p. (Note that dp is the boundary operator on the differential alge-
bra A(Z), while 0x refers to the map ; which counts provincial domains between generators.) Each
of these terms vanishes: The differential on the strands algebra vanishes, since there are no crossing in
the strand diagrams of [i], [%], and [é], while the differential on CEA vanishes, since there are no
provincial domains.

In fact, in this case, we have 72; = 0 for all 7 > 3. In particular, we have genuine associativity, instead
of just associativity up to homotopy, so that CFA s actually a differential module. To see this, itis enough
to show that

(x-p1) - p2+x-(p1-p2) =0.

Because our only nontrivial multiplications are
T1
)
2

b- [3
1

3

the only case to check is that

(- [3D- 131+ ([3]-[5D =0

But both terms equal c.

One way to understand this associativity geometrically is as follows. Recall from Example 3.55 that
the index-two moduli space from {4} to {c} with asymptotics at east infinity given by {[%], [%]} has
two ends: a two-story end and a split curve (i.e., collision of levels) end. The two-story end corresponds
to the term (z - [ ! ] )- [ 2 ] : The producta - [ ! ] counts curves which begin at 2 and end at & via the Reeb
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chord p1, while the subsequent product with [ % ] counts the second story of the holomorphic building,
which ends at {c} via the Reeb chord py3. On the other hand, the term 4 - ([ 5] . [ Z ]) counts curves
which converge to the join of [ %‘ ] and [ % ] , and hence which representa collision of levels. Thus showing

associativity in this context amounts to counting ends of a given index-two moduli space, which is 0 mod
2 by Theorem 3.53.

Example 4.18. Now consider Figure 4.2. This has four generators, namely {4, ¢}, {4, d}, {b, ¢}, and

Figure 4.2: The local picture in Example 4.18.

{b, d}. Since none of the regions shown in this local picture are provincial, we again have that 4 is trivial.
The nontrivial 72, operations are

{a,c} - [53] ={b,c}
{a,c} - [21] ={a, d}
{a,c} - [52] ={bd}
{bc} |22 ={bd}
{a,d}- |} 4] ={bd}

Note that, here, we have strands algebra elements like [ 5 3 ] to indicate that the second sheet of the cov-
ering over [0, 1] X R is provincial, with boundary on the third a-arc (or, rather, the 2-arc corresponding
to the point 3 on the boundary).

This multiplication, like in the previous example, is associative. The only equation to check is that

{act- 37D - 122 ] +Haar-([2°] - [22]) =0 (43)

But [; 3] . [2 2] = [i 2],andsobothtermsare {a,c} - [i 2] ={bd}.

Geometrically, this equation is given by counting ends of the moduli space from x = {4, ¢} toy =
{b, d} with asymptotics at east infinity given by [ 13 ] such that the Reeb chord from 3 to 4 occurs before
the Reeb chord from 1 to 2. The first term in Equation (4.3) represents the holomorphic building end,
in which we approach pi, infinitely far before we approach p34. In the language of Example 3.56, this
corresponds to the two-story end which occurs when evs4 —eviy = co. The second term occurs at the
collision of levels end which occurs when evs4 —eviy = 0. Thus the two terms correspond to the two

ends of the moduli space from Example 3.56. Proving that the CFA algebra of Figure 4.2 is compatible
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with the strands algebra is thus equivalent to stating that a certain moduli space has an even number of
ends.

Example 4.19. The generators of Figure 4.3 are {4, d}, {4, ¢}, {b, c}, and {4, ¢}. We now have the fol-

Figure 4.3: The local picture in Example 4.19.

lowing nontrivial multiplications in CF4:

0{a,d} = {b,c}
{a, e} - [53] ={b ¢}

{b,c} - [%2] ={b ¢}
{a,d}-[1%] =1{be¢}
{a,d} - [%1] ={a, e}

The only nontrivial A relation is
(04{a,d}) - [% 2] +{éz,d}8[§ 2] =0.

Recall that 0 [% 2] refers to the boundary operator on the strands algebra, which is itself a differential

algebra, whereas the 0 in {4, d} refers to the map m; on CEA.

The first term in the A, relation above corresponds to the two-story end from Example 3.57. The
first story is represented by d{a, d}, while the second story is represented by the product with [  2]. The
second term corresponds to the join curve end when the branch point escapes to east infinity.

So far, all of our type A modules have been genuine differential modules. If one checks CFA for
the more complicated diagram for Example 3.58, one obtains a differential module again. In general,
however, this is not the case, and our higher multiplications 723, 724, . .. are, in fact, necessary.

Example 4.20. Consider the local Heegaard diagram and corresponding shaded domain D; + D, in
Figure 4.4. The type A module is generated by {4, ¢}, {b, ¢}, {6, d}, and {4, d}. The disk D; from d to ¢

is counted in the moduli spaces involved in the definition of . Thus
0{a,d} ={a,c} and 08{bd} ={b c}.
We may choose / so that there is a holomorphic map whose projection to % looks like D,. Thus

{a,d} - [1] = (b d}.
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Figure 4.4: A local picture which demonstrates that CEA (H) need not be associative. The unla-
beled point inz NJ is never part of a generator. After all, a generator must have either ¢ or , since
they are the only generators lying on the a-curve bounding D;. (While this curve is drawn as an
arc, we imagine it closing oft somewhere away from this local picture.) Butsince only one element
in a generator can lie on the £-circle in the middle, no generator can include this unlabeled point.

To understand this, consider the rightmost diagram in Figure 4.5. The green slit goes from 4 to some
point on the red circle. This point is the unique point such that the slit domain (shaded in gray) is con-
formally equivalent to an annulus which is a branched double cover of [0, 1] x R.

But note that associativity fails because

{ady-([5]-[3) =tady-[{] =6y 0= ({ad}- [1])- 3] (4.4)
(The last equality follows from the fact that {4, d} - [ ! ] = 0.) The term on the left-hand side of Equa-

; (. (. [

Figure 4.5: Ends of the moduli space in question.

tion (4.4) corresponds to the rightmost figure in Figure 4.4, in which a split curve degenerates. In partic-
ular, the split curve end corresponds to an element of MPHD2 (L4 dY b, dY, {p13}). This is indeed an
end of the moduli space MP1*P2 ({4, d}, {b, d}, {12, p23})-

But this time, because the right-hand side of Equation (4.4) is zero, we have not yet accounted for the
other end of this moduli space. In fact, there is also a two-story end, seen on the left side of Figure 4.5.
This building is an element of M1 ({4, d}, {a, c}) x MP2({a, ¢}, {b,d}, {p12, p23}). That is, the first
story, which comes from 8{z, d}, corresponds to the region D;. The second story occurs by approaching
the Reeb chords [ i ] and [ % ] at the same time. Algebraically, then, this term corresponds to

may (Hadh [3] [3]) =ms (fa ek [3] [3]) = (b )

Thus we see that the Aq, associativity relation, which says that

{ady-([3]-13]) + (e dy - [3]) - [3] +ms0tadl [ 3] [3D =0
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holds, since the middle term is zero and the other two terms correspond to ends of an index-two moduli
space. (Note that we do not have any other terms since 0 [ ! ] =0 [ 2 ] =0and d{b,d} =0.)

Example 4.21. The examples we have discussed thus far have involved local pictures of bordered Hee-
gaard diagrams. We now do an example in full. Recall the example of a bordered Heegaard diagram H
for the genus-1 handlebody in Figure 2.6. It will be helpful for our purposes to draw this diagram as in
Figure 4.6. There is only one generator in this example, namely {x}. Note that there are only two re-

\
d

3
»\%)jm =
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7

Figure 4.6: A bordered Heegaard diagram for the genus-1 handlebody.
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Figure 4.7: The shaded region indicates a curve in M (%0, x0; 023, p12) which is counted in the
xo-coefficient of 73 (xo, p23, p12).

gions: One is the shaded domain D(B) on the left side of Figure 4.7, while the other is its complement.
The latter crosses z, though, so our holomorphic curves must project only to the region D(B). As shown
in Figure 4.7 and Figure 4.8, then, we have

m3 (%o, P23 _/012) =x0 and m4(xo, P23, P13, ﬁ12) = X0-

In general, our only nontrivial multiplications are these higher multiplications of the form

M2 (X0 P23, 135+ - -5 L135 ﬁlz) = X0,

where there are z copies of p13 = p12 W pp3. It is straightforward to verify that this obeys our Ao, compat-
ibility relations. (Roughly speaking, the second term in Equation (4.2) vanishes, while the first and third
terms cancel out.) .

In this case, not only is CEA4(H) not a differential module, but it is also, in fact, an unbounded A
module. Thus H could not be an admissible Heegaard diagram, thanks to Lemma 4.14. Indeed, the
domain D(B) is a periodic domain, since B € 7, (x, x), but has only positive coefficients.
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Figure 4.8: By doubling the domain, we obtain a curve in M?B (0, x0; 023, P13, £12) Which is
counted in the xy-coefficient of 74 (o, 23, p13, p12)-

Example 4.22. The bordered Heegaard diagram H' in Figure 4.9, like that of Figure 4.6, represents the
genus-1 handlebody. There is a provincial domain between y and w, so dy = w. Our only nontrivial

AN
d

X

(=4 Py

AN
7

Figure 4.9: This is a different bordered Heegaard diagram representing the standard genus-1 han-
dlebody. There are three regions not adjacent to z. (Note that the region to the left of y is the same
as the region to the right of w.)

multiplications are

I
g '8 8

v
x-[3]
v 3] =

Higher multiplications 73, 74, ... vanish identically. This is thus an honest differential module which

|

W= W =

satisfies associativity on the nose, as opposed to up to homotopy.

Remark 4.23. One might wonder whether there is some condition on ‘H which makes CEA (H) agen-
uine differential module. A bordered Heegaard diagram is called nice if each region which does not touch
the basepoint z € H is a topological disk with at most four corners. In this case, the associated type A
module does not have higher differentials. Loosely speaking, nice diagrams do not have higher multipli-
cations because any holomorphic curve # € M5B (x, y;8) whose source goes to east infinity must escape
toward east infinity at a single time. Thus M®(x, y;8) is empty if  has more than one part. Note that the
regions D in Example 4.20 and B in Example 4.21 are both annuli, so the Heegaard diagrams in those
examples are not nice. This is why the corresponding type A modules are not differential modules.
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Furthermore, one may always obtain a nice Heegaard diagram by performing “finger moves.” These
moves look like the move between Examples 4.21 and 4.22. See [LOT18, Chapter 8] and [SW10] for
more details on nice diagrams.

We now prove that CEA (H) is indeed an A module over A(Z).
Proof of Theorem 4.16. We would like to show that

0= Z ml‘(mj(x,al,...,aj_l),...,an_l)

I+i=n+1
7 n—1

+ Z my(X,ag,...,0a0...,4,-1)
=1

n—2
+ Z My1(X, aty ..., ApApsly+ > dp—1)-
=1

Consider the y-coefficient of each term above, where y € S(?H) is arbitrary. The first term corre-
sponds to two-story ends in all moduli spaces M%(x, y;8) for B € m(x,y), ind(B,8) = 1, and (x,8)
strongly boundary monotone.

The second term corresponds to all join curve ends and odd shufle curve ends. Showing this takes a
little bit of work: First, note that da(p) is the sum of all 2(p”") where p’ is obtained from p in one of two
ways: (1) by replacing some chord p; € p with a splitting {2, 3}, i.e., with a pair such that p; = p, W p3,
such that the result p” is consistent and has no double crossings; or (2) by replacing a nested pair of Reeb
chords in p by its corresponding interleaved pair such that no double crossings are introduced. A priori,
however, the east asymptotics of join curve ends and shuffle curve ends may either be inconsistent or have
double crossings. It is easy to show, however, that such cases never occur as elements of the boundary
OMB(x,y;0).

The final term corresponds to the collisions of levels. We must argue analogously to the second term
to verify this. See [LOT18, Section 7.2] for details.

Note that Theorem 3.53 implies the result. In particular, the sum in the Ao compatibility equation is
exactly equal to the total number of ends of all moduli spaces MB(x, y;p) for suitable Band g, minus any
even shuffle curve ends. But there are an even number of even shuffle curve ends, proving the result. O

4.3.3 Invariance

It turns out that, with this definition, the Ac module CEA (H) is actually an invariant of the bordered
3-manifold defined by H. This is thus our first bordered Heegaard Floer invariant.

Theorem 4.24. The As module CFA (H) is independent, up to Aes homotopy equivalence, of the choice
of admissible almost complex structure which achieves transversality. Furthermore, if H and H' are provin-
cially admissible bordered Heegaard diagrams for the same bordered 3-manifold (Y, Z,¢ : F(Z) —

8Y), then the Acs A(Z)-modules CEA(H) and CEA(H’) are homotopy equivalent.

This justifies the notation CEA (Y) for the type 4 module of the bordered 3-manifold Y. (It would

perhaps be more accurate to write the type 4 module as CEA (Y, Z,¢),oras CEA (Y, ¢:F(2) - aY),
but this is a bit unwieldy.)
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We do not prove this theorem, whose proof is somewhat distinct from the primary narrative thus far
of moduli spaces of holomorphic cures and the degenerations which appear in the compactification. See
[LOT18, Section 7.3] for a full proof.

Example 4.25. Recall the diagrams H and H’ from Examples 4.21 and 4.22. They clearly represent the
same bordered 3-manifold (namely the genus-1 handlebody), since their respective curves only difter by

an isotopy. The A modules CEA (H) and CEA(H') are not equal, as the former is unbounded while
the latter is operationally bounded. But they are homotopy equivalent.

First, we construct a homomorphism £ : CEA (H) — CFA (H’). The most natural such homomor-
phism should have fi (xp) = x. To build this into an A« homomorphism, we need

Alo) - [3] = 0falxo [ 5]

Note that, technically, there are three other terms, namely f> (xo, 0 [ % ] ), f2 (0o, [ % ]), and /i (xo - [ % ])
But because 0 [ % ] = 0 and H has trivial 71 and m,, it follows that these terms vanish. Since f1(xo) = x,
it follows that £ (xo, [ %]) = y. Note that the corresponding A, compatibility equation for any other
basis element 2 (p) of the strands algebra A(Z) is trivially satisfied by setting /> (xo, 2(p)) = 0, since all

the terms vanish. This completely defines /5 : CEA (H)® A(Z) — CEA (H).
Now the compatibility equations for /3 and f4 say that

films (o [3] 13 1) = ma (B2 (w0 [3]), [3]) +0F5 (w0 [ 3 [3])
Al (oo 51151 3 1)) = me (A (s [3] 15D 2D +0f (s [3] 5] [2])-

Again, there are other terms, but they vanish. (Note that the strand algebra elements do not compose.)

The left-hand side of the f3-compatibility equation is x, as is the first term on the right-hand side, so it fol-

lows that df3(xo, [ Z ], [ ! ]) = 0. It turns out that we may set /3 (o, [ z ], [ ! ]) = 0. On the other hand,

the compatibility equation for f; is satisfied if we let f3(x, [ Z ], [ : ]) = yand f4(x, [ 2 ], [ : ], [ ! ]) =0.
This suggests a general formula for /-

Sfilxo) = x,

felxo, a(pr),..., a(pr—1)) = ywhena(p)) = [3] anda(p,) = [1],
Jfe(xo, a(p1), ..., a(pp-1)) = 0 otherwise.

We may verify that this gives an Ao homomorphism CFA (H) — CFA (H).

Before even trying to show that this is a homotopy equivalence, note that it is a quasi-isomorphism,
i.e., gives an isomorphism on cohomology. After all, the cohomology is generated by {x} (respectively,
{x0}) in CEA (H') (respectively, CEA (#H)) with trivial differential. The homomorphism /" is simply the
isomorphism xy — x on cohomology, then.

We briefly indicate how to construct the homotopy equivalence between the type A modules. The

details are very similar to that of the construction of f above. Define ¢ : CFA(H’) — CFA(H) by

w=0=g0w[3]) =g @[] [5]) =g @3] [3][3]) =

(Everything else gets mapped to zero.)
Notice that (gof) (xo, 2(p1), ..., a(pp-1)) = xo if a(pr) = [ Z ], a(pp-1) = [ ! ], and the intermediate
algebra elements 2(p;) = [ ! ] Otherwise, we have (g o f)(x0, 2(p1), ..., a(pr-1)) = 0. One may verify
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that this is homotopic to the identity homomorphism on CFA (H) via the homotopy with A1 (xp) = xo
and higher /,’s vanishing everywhere.

On the other hand, we have (f 0 g)(x) = x and (f o g)(w, a(p1),...,a(pr-1)) = yif thep,’s are, in
order, some number of [ % ] ’s, then a [ % ] , followed by a [ % ] ,and some number of [ % ] ’s. Otherwise, we
define / o g to be 0. This is homotopic to the identity homomorphism on CEA (H'), this time by the
homotopy with »; = 0 and b, (w, [%],, [%]) =yforn > 1.

4.4 Type D structures

The other bordered invariant which we will define, denoted CT@(Y ), is a somewhat stranger algebraic
creature, namely a module associated to a so-called “type D structure.”

Let A be an A, algebra with underlying module 4, as usual. Let N be a left k-module and let 311\] :
N — A ® N, with tensor product taken over k, as usual. We may now construct a sequence of maps
35\[ : N > A% ® N given by

5?\[ =idy

8%y = (idyeu-n ®Iy) 0 o'

If 35\[ = 0 for sufficiently large 7, then we say that (2, S}V) is bounded and we may promote our maps 55\[
to a map on the tensor algebra:

d:N—->T (AN
X Z 35 (x).
7=0

Almost by definition, we have the condition that (id 4e; ®9") o & = 9"V forall 4, 7 = 0. Here, and later
on, we omit the N in the subscript when N is clear from the context. Graphically, we may depict this
relationship as follows:

e I
Asin our diagrams from Section 4.1, we use dashed lines to “color” elements of the module, which in this
case is /N. We put the dashed lines on the right side this time to indicate that /N is a left module.

|
v
J
|
I
|
|
|

—— Qy —— Qy ——

\

Remark 4.26. If (N, 311\[) is not bounded, we may complete the tensor algebra into T (A) = [12,4%".
Then we may still put our maps ¢’ together into a map 9.

Definition 4.27. Let Abe an A algebraand (2, 5]1\[) a pair as above. In particular, we let N be a left k-
moduleand 8" : N — 4 ® N is a map such that either A is operationally bounded or the pair (I d},) is
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bounded. Recall our definition of D : T*(4) — T*(A) from Equation (4.1). Then we say that (NN, 3]1\[)
is a type D structure over A if

(D®idy)o0d=0.

Graphically, we write this condition as

/ =0.

/5

In the contexts which we will be concerned about, we will always have 4 operationally bounded, so
all of our definitions will work for unbounded type D structures too.

Now suppose we have two bounded type D structures (NN, 5}\]1) and (N, 9]1\]2). Lety!' : Ny —
A ® N be a map, and define

|
v
J
|
I
|
|
\

v N - 4% @ N,

X Z (id gousn) ®3%,) o (id 4o ® Y1) 0 0.
i+j=k-1

Since N7 and N, are bounded, so too is ;kk in the sense that ;kk = 0 for sufhiciently large £. Then ¢ = 3] We
isamap N; — T7(4) ® Ny. If we remove the condition that Nj and N, are bounded, then ¢ simply

has codomain T (4) @ N».

Definition 4.28. A map ¢' : N — 4 ® N, is a type D homomorphism if (D ® idy,) o ¢ = 0.
With dashed lines representing elements of N; and dotted lines representing elements of N>, this may be
represented graphically as

~

Definition 4.29. Similarly, two type D homomorphisms ¢!, ¢! : Nj — 4 ® N are (type D) homo-
topic if there is an analogously constructed /' : Nj — A4 ® N, such that

i
s
PEE
e



i.e., such that (D ® idn,) oh =y —¢.

Unraveling these definitions in the case that A is a differential algebra instead of a general A algebra,
we see that the compatibility condition is equivalent to the condition that

(u2 ® idn) o (idy ®3}\Z) o 5]1\, + (1 ®idy) o 3}\[ N > AQN (4.5)

vanishes. One may rewrite the conditions for homomorphisms and homotopies in a similar way. See
[LOT1S, Definition 2.18].

The case in which we are interested is actually even more restricted than simply asking that A is a
differential algebra. In particular, we are interested only in type D structures arising from the following
example.

Example 4.30. Let A be a differential algebra and A1 a differential module which is free as an 4-module.
Consider some basis of M over 4 and let X denote the span of this basis, so that M/ = A® X. Restricting
the boundary operator on M to X gives a map

X > ARX =M.
The pair (X, 8%) is a type D structure, and restrictions of module maps are type D homomorphisms.

We may go the other direction, and obtain a left module from a type D structure. One may thus
think of a type D structure as an additional combinatorial piece of data on top of the differential module
structure. In particular, we have the following proposition.

Proposition 4.31. Let A be a differential algebra and (N, 3]1\[) a type D structure. Then we may define
an associated differential module N over A. In particular, N bas underlying module A ® N, which may
then be given the structure of a (differential) left A-module with maps

mi(a ® x) = [([uz ® idy) o (idy ®5}V) +u ® idN] (2 ® x)
ma(a® (b® X)) =pu(a®b) @x.

Moreover, if we have a type D homomorphism ¥ : Ny — A® Ny between two type D structures, then there
is an induced (chain) map of differential modules A ® Ny — A ® N, defined by

a®x > (my ®idp,) o (idg ®y7).

Similarly, hbomotopies between type D homomorphisms induce chain homotopies between the corresponding
chain maps.

The proof simply involves unwinding the definitions, and we omit it here.
We conclude this somewhat tedious section with the following proposition, which will be useful for

showing that CFD(Y) is invariant up to homotopy.

Proposition 4.32. If Ny and N> are two type D structures over a differential algebra A, with associated
differential modules Ny and N, then the correspondence in the previous proposition gives an identification
between a type D homomorphism from Nj to Ny and a homomorphism of the differential modules Ny
and No. Moreover, two type D homomorphisms are homotopic if and only if the corresponding differential

module homomorphisms are A-equivariant homotopic.
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4.5 The type D module CFD

As in the definition of CEA, let H = (2,2, B, z) be a provincially admissible Heegaard diagram. This
time, let Z = —0H be the reverse of the pointed matched circle. In particular, we let Z = (—ai an
A%, M, z), where M is the usual matching coming from the a-arcs. Let A(Z) be the associated algebra
of this orientation-reversed pointed matched circle.

4.5.1 Definition of the type D module

The type D module, like the type A module, is defined by counting holomorphic curves satisfying certain
asymptotic conditions at east infinity. As an F,-vector space, the two modules are defined identically, but
the A(Z)-module action is different. It will be a genuine differential module, instead of an A+ module.
Furthermore, it will be a left module, rather than a right module.

Let X (H) denote the FF,-vector space generated by S(H). We define the idempotent /p(x) to be
exactly the “opposite” of 7,4(x) in the sense that Ip(x) = I({1,..., 2k} \ o(x)) € A(Z,0). The left
action of Z(Z) on X (H) is given by

0 otherwise.

) x = {ID<x> 5 = (0,26} o),

Then we define Cﬁ(?—l) by
CFD(H) = A(Z) @ X(H),

where the tensor product is again over k = Z(Z). In particular, C/']-*"Y)('H) is essentially free over A(Z)

and has a very simple module structure:
a-(b®x)=(ab)  x.

As in the CFA case, the only summand A(Z, 7) which acts nontrivially on CED is the summand 7 = 0.

Recall that CFA4 was an A module whose multiplication maps were defined by counting holomor-
phic curves in MB(x, y;B), where g was a sequence of nonempty sets of Reeb chords. For C”}i), we only
need to define the differential, as there are no higher multiplications. To define the differential, we only
count curves in M2 (x, y; 2), where 2 is a sequence of one-element sets of Reeb chords.

If2 = ({p1},..-> {pn}) is a sequence of one-clement sets, then let 2(2) = a(p1)...a(p,) denote
the product of the algebra elements associated to the one-element sets {p,}. Note that this is, in general,
notequal to 2(g) = a({p1,...,pn}). Furthermore, let =3 = ({—p1},. .., {—px}) denote the sequence of
chords with reversed orientation. Recall that if p; is a Reeb chord of dH, then —p; is a Reeb chord of
Z=-0H.

Definition 4.33. Asin the CFA case, let ] be a fixed almost complex structure on X X [0, 1] X R which is
admissible and which achieves transversality. Letx, y € S(H) be generators, andlet B € 7(x, y) connect
the two. Define the coefficient

ay= Y, #H(Mayp)ap) e A2),
ind(Bp)=1
(B,) compatible
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Then the differential on C%(?—[) is defined on basis elements by

A1®x) = Z Z i, ®y.
ye&(H) Bem (xy)

For convenience, we often write 0x instead of d(I ® x). Extending by linearity and the Leibniz rule
0(a®x)=(0a) ®x+aQ (Ix)
gives amap 0 : @)(7—[) - C/'ﬁ)(H)

Thus far we have defined @)('H) only as a differential module. (In fact, we have not yet proven that
9% = 0. See Section 4.5.2.) In fact, the Z( Z)-module X (%) comes with a map

Y 1 X(H) = A(2) ® X(H) = CFD(H)
x — J(I® x).

Since @(’H) is a differential module, Example 4.30 implies that (X (), 8') defines a type D structure
over A(Z) with base ring Z(Z). Then Proposition 4.31 implies that CFD(#H) is the differential module

defined by this type D structure. It turns out that C"I?\D(H) is invariant up to homotopy not only as a
module, but in fact as a type D structure.

Lemma 4.34. If H is provincially admissible, then the boundary map 0 is well defined. In particular, the
sum in the definition of 0 is finite for every x € S(H). Furthermore, if H is in fact admissible, then the
map 3 is bounded.

Proof. First, observe by Lemma 3.11 that any B with M3B(x, y; £) must have B positive. As in the type A

case, we may now apply Proposition 2.23, which says that there are only finitely many classes B € 7> (x, y)

for a given p. Since there are only finitely many generators y € S(#) and algebra elements 2 € A(Z), it

suffices for the first part to simply check that for any given 4, there are only finitely many ways to write it

as the product of Reeb chords, so that we sum over finitely many 2. But this is certainly true, and follows

from the strand diagram interpretation of elements of LA(Z). This proves the first part of the lemma.
Note that the coeflicient of y € G(H) in % (x) counts elements in all products of the form

k
l_[ MB[ (Xz'J X/+15 ﬁ)z'))
i=1

where x; = x and x¢4; = y. Thus any nonzero % (x) term corresponds to a sequence of generators
{X1,..., X441} and, by Lemma 3.11 again, positive homology classes B; € 7 (X, X;41). Let B := ) B; €
75(%,y). This is a positive homology class. The sum |B| of its coeflicients is at least £. Since there are only
finitely many positive homology classes, thanks to Proposition 2.24, it follows that there is a maximum
| B| over all positive B, hence an upper bound on £. Thus % = 0 for all but finitely many . O

Remark 4.35. As with type A modules, we may decompose the type D module along spin‘ structures on
Y. Thus we may write CFD(H) = + CFD(H, s), which in theory would help us obtain a grading of
C/’}_‘?D(’H) Indeed, with some more work, we can show that C/j‘?D(”H) is a differential graded module, and
not just a differential module.
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452 9*2=0

While we have been calling C%(H) the type D module, we have not yet even shown that it is actually a
differential module. We will show the following statement in this section.

Theorem 4.36. The boundary operator 0 on C/'F\D(’H) satisfies 0% = 0.

As with type A modules, we first discuss a few illustrative examples. Before doing so, we briefly spell
out what exactly #* = 0 means in this context. We have explicitly defined d on a generator x (or, more
precisely, on I ® x). If 2 € A(Z) is an arbitrary algebra element, then

0(a®x)=(0a) ®x+aQ0(I1®x) =(0a) x+a- Z axy ®y |
yeS(H)

where axy = 2ger, (xy) af’ y- In particular, it follows that

9?2 ®x) = (0°2) x+2(02) @ 0(I®X) +2 ® d*(I ® x)
= (0%2) ® x+2(da) (%) +a - Z Oaxy ®y + Z (axy - ayw) ® W
yeG(H) weG(H)

The first term vanishes because A( Z) is a differential module. The second term vanishes because we are
working in characteristic two. As such, to show 0% = 0, it is sufficient to show that

Oayy + Z axwawy =0 (4.6)
weS(H)

forallx,y € S(H).

Example 4.37. In Figure 4.10, we have drawn the Heegaard diagram to the right of the pointed matched

circle, unlike in Examples 3.55 and 4.17. This is because CFD is defined via an orientation reversal of the

D :
) b
1/ a

/

Figure 4.10: The local picture for Example 4.37.

pointed matched circle. (And, in fact, later on in Section 4.6, we will primarily be interested in cutting a

closed 3-manifold into two bordered manifolds, and will compute CFA of the left half and CFD of the
right half.)
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We have, as before, three generators {4}, {4}, and {c}. Remember that we have orientation-reversed

Reeb chords. Thus our boundary maps are

ey = [31 oy + [12 [{a)
(e} = [1°[{a}

Note that we omit tensor products. In particular, technically we should write {6} = [ 23 ] ® {a}. Fur-

thermore, note that, unlike in the CF4 case, the only nontrivial multiplications occur when the strands
algebra element we keep track of which a-arcs are noz occupied by the generator. We may verify directly
that 8% = 0: Note that

ey =3 ) 83+ (0[32]) {ay + [3 1|0 {0} + 32 [0{a).

This last term vanishes because {4} = 0. The first term vanishes because the strand diagram corre-
sponding to [ % 1 ] has no crossings. Finally, because

a[i*]=1131=13"1-[%°]
it follows that the two middle terms cancel out.
Asin the CFA case, there is a geometric interpretation of this in terms of ends of an index-two moduli
space. Consider the same moduli space asin Examples 3.55 and 4.17, namely MB({a}, {c}; {p12} {p23}).

Recall that this moduli space has a two-story end and a split curve end. The two-story end corresponds
to the third term in 8%{c}, namely

[3totey =131 (117 Hat).

Similarly, the split curve end (i.e., collision of levels) corresponds to the second term in 8*{c}, i.e.,
when the curve approaches p1, and py3 at the same time. In particular, the component [i’ 2 ] {a} of
0{c} corresponds to the projection onto X, which approaches the Reeb chord pi3 at east infinity. The
differential 0 [ % 2 ] in the strands algebra tells us that we have degenerated a split component with west
puncture p;3 and east punctures p;5 and py3. (Note that, in the diagram, east infinity is at the west, because
we have flipped the diagram around.)

Example 4.38. The type D module of the bordered Heegaard diagram in Figure 4.11 has boundary maps

0{a,d} = [gz]{a,c}
0{b,c} = [%4]{4,5}
0{b,d} = [%3]{4,d}+ [g*l]{b,c}.

To show 8% = 0, it suffices to check that

0=0bd} =01 Hadt+ 1] ([52Ha ) +o[5 o +[31] - ([F* Hac}). (47)

Note that the first and third term vanish. Thus %> = 0 follows from the fact that a(p34) and a(p12)
commute in the strands algebra, i.c., that

(221132 =135] = 13]114])
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Figure 4.11: The local picture for Example 4.38.

We again have a geometric interpretation for this result. Consider the same moduli space as in Exam-
ples 3.56 and 4.18, namely ME({a, ¢}, {b, d}; p12, p34). The ends appear when evs4 — evy approaches 0
or co. But now also consider the moduli space where ev34 < evyy, ie., MB({a,c}, {b,dY; 034, p12). This
has a two-story end when evys — evs4 — 00, as well as a collision of levels end when evy; — evs4 — 0. The
total number of ends of these two moduli spaces should certainly be even. The two collisions of levels
cancel each other out, since they are identical curves. In particular, they both have asymptotics {12, 34}
occurring at the same time. The two-story ends, on the other hand, occur as the first and third terms in
Equation (4.7).

Figure 4.12: The local picture for Example 4.39.

Example 4.39. Finally, consider the bordered Heegaard diagram in Figure 4.12. We have the nontrivial
differentials

0{b,c} ={a d}
0{b, e} = [%]{4,6} + [?]{b,c}
0a, e} = [%]{&Z, d}.

Since the algebra elements [ 2 ] and [ 3 ] are closed in the strands algebra (i.e., the boundary operator takes
them to zero), we know that

b et = [F]ota e+ [Foth b = [3] - ([3]ad)) + [} e dy =0
since [7]13] = [3].
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Geometrically, this again corresponds to counting the ends of two different moduli spaces. The firstis
the moduli space from Examples 3.57 and 4.19, namely the one connecting {4, ¢} to {4, d} via the Reeb
chord p13. The second has east asymptotics given by (12, p23). It is parameterized by the difference in
evaluations evy3 — evyy, and has a collision end and a two-story end. (Note that, this time, we do not have
amoduli space with east asymptotics given by (23, 12), since the resulting pair is not strongly boundary
monotone.) The join curve end of the first family is the same as the collision end of the second family, as
they both have asymptotics {12, 23}. In particular, they both approach the Reeb chords p15 and p,3 at
the same time. The two-story end of the first family corresponds to [ 3 ] {a, d}, since the first story is the
provincial rectangle with corners zbcd, while the second story is the rectangle 13¢c. Finally, the two-story
end of the second family corresponds to [ 2 ] ( [ 3 ] {a, d}), with stories projecting to the rectangles 1244
and 23ed.

Example 4.40. Let H be the Heegaard diagram for the genus-1 handlebody with a single generator x, as
in Figure 4.13. As before, there is only one region which does not cross the basepoint z. There is a unique

AN
7
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) X
== ¢
\f:
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Figure 4.13: The genus-1 handlebody (again).

element of M5 (x, xo; 023, p12); this is the same as the element which is counted in 723 (o, p23, p12) in the
CFA case. The associated algebra element is

a(p32)a(pa) = 3]

Note that the Reeb chords p3; and py; are reversed since the type D module is a module over the strands
algebraassociated to Z = —0H. Recall that there are also holomorphic curves connecting xg to itself with
east asymptotics given by 2 = (023, £13, . - ., £13, p12)- But the associated algebra element 2(—3) vanishes
because the Reeb chords do not compose. (In fact, this issue arises because H is not admissible.) Thus

we conclude that C—?:Y)(H) is generated by xo with differential
(9.760 = [ % ]x().

The associated type D structure is the map 9" on the F,-vector space X () generated by S(H) = {xo}
which is defined by
Sl(xo) = (%Co = [?]xo

This map is not bounded since

Peo=[1e (1] e
and so on for higher iterates d9”. Notice, after all, that Lemma 4.34 only guarantees that o' is bounded if
the bordered Heegaard diagram is admissible.
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Y

Figure 4.14: The deformed genus 1 handlebody (again).

Example 4.41. Consider the admissible diagram in Figure 4.14. (Note that the previous example was
only a provincially admissible diagram.) There are no curves which connect w at = —oo to another
generator, so 0w = 0. The only curve which limits at # = —o0 to x is the one in MB (5, w 023), and so
Ox = [ ] w. Note that we have one provincial domain connectlng 9y to w, as well as a domain connecting
y to w via the Reeb chord py3. Finally, the moduli space M5 (9, x5 p12) has one element. Putting this
together, we have

ow=0
e[
Oy=w+ [%]w+ [%]x

This time around, the map o' which takes a generator to its differential is bounded. After all, we have
Px = [g]f)w =0.
Similarly, we have 33 'y = 0, and so all higher iterates " for 7 > 3 must vanish.

Based on these examples, we see that, unlike in the compatibility equation for the type A module,
showing that 0% = 0 for the type D module often requires that we count ends of multiple moduli spaces.
Furthermore, these ends sometimes cancel with each other. Because of this, the proof of Theorem 4.36
is somewhat more complicated than that of Theorem 4.16. However, the basic idea of counting ends of
the compactified moduli spaces remains the same.

Proof of Theorem 4.36. Recall that it is enough to prove Equation (4.6) where axy = Xipe,) y)ab Fix-
ing a homology class B € 7,(x, y), then, it is enough to show that

§ By Bz _
xy+ Ay wa wy =0.
weS(H)
Bl*BZZB

Let 4 be an algebra element, and let g range over all vectors with 2(g). Then the total number of two-
story ends of M2(x, y; ), summed over all choices of 3, is equal to the coefficient of  in the second term

D élx wﬂwy above. One may also show (though this takes a little more work) that the coeflicient of # in

Gaxyy is given by the total number of split curve ends. Note, however, that collisions of levels which do
not result in a split curve end, i.e., elements of

MB(X; Y P15 Pi-1s {/Oz')ﬂz'+1 }:ﬁz’+2: ce )_/On)
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with pT # p__ |, are not counted in this sum.

Thus it remains to show that the total contribution from join curve ends, shuffle curve ends, and
collisions of levels which are not split curve ends is zero. Note first that shuffle curve ends do not exist
since the partition £ is discrete. One can determine that the only collisions of levels which may appear are
the following:

* p; = pl: Inthis case, these moduli spaces are exactly the ones which also degenerate off join curve
ends via the factorization 2(—p1) ... a(=(p; W p;41)) ... a(—=p,) of a. Thus collision ends coming
from this case cancel with join curve ends.

o {M(p;), M(p?)} N M(p7,), M(p7,;) = 0 and the chords p; and p;4; are either nested (in either
order) or disjoint: There is then another factorization of « given by swapping the order of the
a(—p;) and a(—p;41) factors, so this case contains collision ends which appear in pairs. Thus this
case cancels with itself.

We conclude that there is no contribution from other moduli space ends, and so Theorem 3.53 implies
the equation 0% = 0, as desired. O

4.5.3 Invariance

We thus far have a differential module (@(7—[), 0) associated to a bordered Heegaard diagram. As seen

in Examples 4.40 and 4.41, two CFD modules of bordered Heegaard diagrams which represent the same
3-manifold are not necessarily isomorphic as differential modules. But, as in the type A case, the two type
D modules are homotopy equivalent. In particular, we have the following statement.

Theorem 4.42. Let H be a bordered Heegaard diagram and let Z = —0H. The differential module
CFD(H) is independent, up to homotopy equivalence of differential A(Z)-modules, of the choice of ad-
missible, transversality-achieving almost complex structure on X X [0,1] X R. Furthermore, if H and H'
are provincially admissible bordered Heegaard diagrams for the same bordered 3-manifold (Y, -2, ¢ :
—F(Z) — 8Y), then CED(H) and CFD(H) are homotopy equivalent.

As in the case for the type A module, the proof is somewhat technical, but somewhat less related
to our discussion of moduli spaces. To show invariance under isotopies and choice of almost complex
structure, one uses something called a “continuation map,” as in [Flo89a]. Invariance under Heegaard
moves, particularly a handleslide of an a-arc over an a-circle, requires the definition of a new “moduli
space of triangles.” See [LOT18, Section 6.3] for a detailed proof.

We give one example of invariance.

Example 4.43. As usual, let H and H’ denote the bordered Heegaard diagrams from Examples 4.40
and 4.41, respectively. Again, these differ only by an isotopy, so we would expect a homotopy equivalence
between their type D modules.

Constructing this homotopy equivalence is easier than constructing a homotopy equivalence be-
tween their type A modules (cf. Example 4.25), since we no longer have higher multiplications to worry
about. Consider the map

f: CFD(H) — CFD(H')

xo o x+[3]y+ 3w
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This is a chain map because

fx0) = [3]x=0(x+ 3]y +[3]w) = 9f (x0).
On the other hand, define

g C/'F\D(”H') — C/'ﬁ)('H)
X = Xp
v | 1w

we [ §]%.

It is not too hard to verify that this is also a chain map. The most interesting case is
g(0x) = g ([3 ]w) = [} ]x0 = 9x0 = Ig(x).

Clearly g o f is the identity on @(H) It is not too hard to construct a homotopy equivalence
between f o g and the identity map on CFD(H') either. Indeed, the chain homotopy defined by

s [Fle+ B+ 3w
N [%]x+w

w [%]x+y

works.

It follows, then, that CFD(H) ~ CFD(H’), as desired.

4.6 The pairing theorem

Notice that slicing a closed 3-manifold Y along a separating surface gives a decomposition ¥ = Y1 Uy 1>
into two bordered manifolds. We might wonder whether there is a relationship between HF (Y) and the
bordered Heegaard Floer invariants of Y7 and Y>. In fact, bordered Heegaard Floer homology gives a way
to compute HF (Y), thanks to the following pairing theorem.

Theorem 4.44. Let Yy and Y be bordered 3-manifolds with Y, = F(Z) = —0Y, for some pointed
matched circle Z. If Y is the closed 3-manifold obtained by gluing Y1 and Y> together along F(Z), then
CE(Y) is homotopy equivalent to CEA ())®CFD(Y,), where ® denotes the Ao tensor product. In par-
ticular, we have the following relationship between the Heegaard Floer homology of Y and the bordered
invariants of Y1 and Y>:

HE(Y) = H. (Eﬁq(méc’rﬁb(n)).

The first step is to note that, in the setup of the pairing theorem, gluing Y7 and Y5 into the closed
manifold Y is equivalent to gluing their respective bordered Heegaard diagrams. In particular, suppose
Hi = (21,2, B, ) and H, = (Z,, 2o, B2, z) are bordered Heegaard diagrams for ¥; and 17, respectively,
with OH; = Z = —0H,. Let T = 3, Uy 25, and similarly for# and 8. Then H = (Z, 2,4, 2) is a closed
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Figure 4.15: Gluing along the shared boundary makes it clear that gluing bordered Heegaard di-
agrams is the same as gluing the corresponding bordered 3-manifolds.

Heegaard diagram for Y, which we may write as H = H; Uy H,. Recalling the Morse theoretic descrip-
tion of a (bordered) manifold from its (bordered) Heegaard diagram in Section 2.3, this intuitively looks
like Figure 4.15. (Similarly, cutting a closed Heegaard diagram at some separating circle Z corresponds
to cutting a closed 3-manifold at the surface F(Z).)

There is a relationship between the generators of these diagrams. Suppose x; € S(H;) and x, €
S(Ha2). Ifo(x1) No(xy) = 0, so that x; U X, is a generator of H, then we call (x, X,) a compatible
pair. Let ©(Hy, Hz) € S(H1) X S(H,) be the set of compatible pairs of generators. There is a bijection
between G(H;, Hz) and S(H). Furthermore, if X; XX, and y; Xy, are both compatible pairs, then there
is a natural identification of 72 (X1 U X5, y1 U y2) with the subset of 75 (xy, y1) X 72(X2, y2) consisting of
pairs (By, B,) with 9B, + 89B, = 0, i.e., with B; and B, “matching” at their shared boundary. Finally,
it is not difficult to show that, if H; is admissible and H is provincially admissible, then H is admissible
as a closed Heegaard diagram. As such, let H; be admissible and H provincially admissible, so that we
may use H to compute the Heegaard Floer homology of Y.

Recall now that the Heegaard Floer homology of H = (Z, &, 5, z) counts holomorphic curves in
% % [0,1] X R which connect generators. In theory, we can cut such a holomorphic curve at 0%, C X.
(From the perspective of the complex structure on X, rather than simply cutting at the circle Z, one
actually stretches the neck connecting X to X, thus creating a pair of infinite cylindrical ends at east
infinity for both ¥; and %,. This setup is reminiscent of proofs of some of the product theorems in
gauge theory, as in [Don02, KM07]) Thus we may consider a holomorphic curve in X X [0,1] X R as
two maps, one onto Xj X [0, 1] X R and the other onto X5 X [0, 1] X R. The restriction to X, connects
generators X; and y; of H;. In particular, if B € 7, (%1 U X, y1 U y») may be written By * By, where B; is
the projection in 7 (X;, y;), then there is a map

MP (% U %0, y1 Uy2s8) = MP (x4, y15.57) X MP2 (%, y25.55)

where ST and S5 are compatible decorated sources which glue to S. More precisely, compatibility means

that there is a bijection @ : E(S7) — E(S7) such that the Reeb chords which label ¢; and ¢(g;) are
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orientation-reverses for each punctureg; € E(S7 ). That they glue to S simply means that we may obtain
S by gluing ST to S5 along identified neighborhoods of corresponding punctures. (In other words, S is
the preglued surface obtained from ST and S35 .) In this case, we write S = S7BS7 .

Of course, two holomorphic curves #; € MP(xy, yi:S7) and #, € MP2(x,, y2;S5 ) only glue
together if the ev(#;) = ev(#,) under the correspondence defined by @. In particular, for the curves to
glue together, their corresponding east punctures must converge to the Reeb chords at the same time.
As such, we may expect some relationship between the moduli space MEB(x; U x, y1 U y2;S) and the
moduli space of matched pairs, i.c., the pullback

— B — —
MM (x5, 1557 3 X2, ¥25.55 ) = MP (%1, Y1557 ) Xevymevs M2 (%2, ¥25.55)-

There is, as usual, an R-action on the moduli space of matched pairs which is free unless both sides of
the matching are trivial strips. The action here involves simultaneous translation of both curves along
the #-direction. We may drop the tilde to indicate the quotient of MM by this translation action. It
turns out, by arguments similar to those in Chapter 3, that MM is a manifold with dimension given by
a certain index formula.

Now we restrict, as with the moduli spaces in Chapter 3, to embedded curves. As usual, the condi-
tion that the curves are embedded is equivalent to a numerical condition on the Euler characteristic. In

particular, let mB(xl, Y15 X2, y2) be the union over all compatible decorated surfaces ST and S5 with
X (STHSY) = Yemb(B), where yemp (B) is as defined at the end of Section 3.2. Assuming B # 0, so that the
R-action is free, define the corresponding quotient to be MMB(xy, Y15 X2;¥2)-

Ifind(B, S) = 1, then it turns out that the number of elements in M?(x, y;.5) is equal (modulo 2) to
the number of elements in | MM (x, Y1 ST 3 X2, ¥2,55 ). The union here is taken over all § = ST 457,
X = X; UXp,andy = y; Uy,. The details of the proof of this statement are reminiscent of our arguments
in the previous chapter.

Thus we have the following proposition, which tells us that this moduli space of matched pairs, which
is defined by looking at the bordered Heegaard diagrams H; and H», gives an equivalent characterization
for the Heegaard Floer homology of H.

Proposition 4.45. Let CF (H1, Ha) be generated as an Fy-vector space by the set S(Hy, H,) of compatible
pairs of generators. Furthermore, define the map 0 on CF(Hy, Ha) by

0(x1 X x3) = Z Z # (MMB(Xh Y15 X2, yz)) - (y1 X y2).
Y1Xy2€S(Hy, Ha) Bema(xy)
ind(B)=1

Then 0 is a differential. Furthermore, for a generic choice of almost complex structure, the chain complex

CE(Hy, Ho) is isomorphic to the Heegaard Floer chain complex CE(H) = CF(Hy Uy Hoy).

Note that the sum defining 0(xy, x3) is finite since H is admissible, thanks to an argument similar to
Lemma 4.14. (Recall that we assumed #H; was admissible and H, was provincially admissible specifically
so that H would be admissible.) Note that the counts in the differentials are exactly the same, modulo 2.

The main issue with this proposition is that the moduli space of matched pairs is a fiber product,
which cannotbe easily translated into the language of A, modules, and thus does not fit with our existing
algebraic framework. A workaround is to instead introduce a “time-dilated” version of the matching
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between M5 (xy, y1) and MP2(x,, y2). In particular, define the moduli space of 7-matched pairs to
be

— B — —

MM (T x5, 31557 52, ¥25.55 ) = MPi(x, Y1557 ) XTeev=ev, MP2(x,, y25.55 ).
In particular, we ask that the z-coordinates for #; at the punctures of ST match with those of #;, at the
punctures of S5, up to a factor of 7. This still has an R-action, though we should translate ; by 7"- r and
1 by t. We call the quotient by this action MMB(T;x,, Y1557 5 X2, ¥25.55 ). We have embedded moduli

spaces as well, which we denote

——3B
MMB(T; X1, Y15 X2, y.z) = MM (T;xy, Y15 X2, )Q)/R

We may define CF (T3 H1, H2) to be the chain complex which is generated by G(H;, H,) and has differ-

ential d7 given by counting elements of this moduli space, i.e.,

Or (%1 X x5) = Z Z # (MMB(T; X1, Y15 X2, )’2)) “(y1 X y2).
y1xy2€S(H1,H2) Bem (xy)
ind(B)=1

Showing that d7 is a differential requires that we extend our definition of holomorphic combs to so-
called “7-matched combs.” These are combs such that, at each story (#1, vy, . . ., vp, #2), the two eastmost
components v, and #; are T-matched, in the sense that 7" - ev.(v) = ev,(#2).

Proposition 4.46. Forany T € (0, 00), the chain complex CF (Ts Hi, Ho) is chain bomotopy equivalent
to CF(1;Hy, Ho) = CF(Hy, Hy), and bence to CF(H).

As T grows larger, the moduli space in the differential 97 of CF (T;H1, H2) counts matched pairs
where the left side (which will correspond to the CEA side in the pairing theorem) converges to Reeb
chords on a smaller and smaller interval of R, as seen from the perspective of the right side (which will
correspond to the CFD side in the pairing theorem). That is, in the limit, Reeb chords begin to collide
on the left side, while Reeb chords grow infinitely far apart on the right side.

One way to encode this is via simple ideal-matched combs. In particular, consider a simple holomor-
phic comb U, for H; (i.e., U; has at most one story) and a toothless holomorphic comb U, for H, (i.e., U,
has no components at east infinity). Then a simple ideal-matched comb may be obtained by allowing
each story in U to occur at a single time # in Uj. In other words, if ¢ : E(U,) — E(U}) is the cor-
respondence between punctures (hence between Reeb chords), and if p and ¢ are two punctures on the
same story of Ua, then the #-coordinates of @(p) and p(g) are the same. See Figure 4.16 for a schematic
representation of this.

Remark 4.47. Technically, there are some more conditions which are needed to define simple ideal-
matched combs (see [LOT18, Definition 9.28]), but the details are not too important for us, so we omit
them here.

It turns out that T-matched curves converge to simple ideal-matched curves. If we “trim at east infin-
ity,” then the resulting moduli space of trimmed simple ideal-matched curves has exactly the same counts
as MMB(T;xy, Y15 X2, y2) for sufficiently large 7". In particular, the moduli space in the definition of
Jr may be replaced by the moduli space ./\/l/\/lﬁi (X1, y15 X2, y2) of these trimmed simple ideal-matched

curves.
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Figure 4.16: The one-story comb on the left is Uj, and is allowed to have components at east
infinity. The three-story comb on the right is U5, and has no components at east infinity. Each
story of U5 is mapped to a single point on the vertical line in the middle, i.e., to a single time z.

Algebraically, what this corresponds to is the following. Recall that we have a map 3)1( ) : X(Hy) —

(j:ﬁ)(?-[z) which is defined by sending a generator x, € S(H,) to (I ® x»). Graphically, the elements
which the differential counts (i.e., the trimmed simple ideal-matched curves) correspond to maps of the
form
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In particular, each story of the right side U, of a trimmed simple ideal-matched curve corresponds to
taking some repeated differential coming from the type D structure. This outputs an elementof A(Z)”®
X (H2), where nis the height of U,. Now the holomorphic curve Uj on the leftside of the trimmed simple
ideal-matched curve corresponds to the higher multiplication 72,1 of these 7 elements of A(Z) which
are outputted by the right side, along with the generator x; € S(H,).

Summing over all trimmed simple ideal-matched curves, we see that, for large 7', the differential o7
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is given by
Or(x1 X x3) = Z Myl (XL, s -5 4;,) (Dy, 0 -+ - 0 Dy ) (X2).
Here {4,} be basic generators for A(Z), and D, : X(H,) — X (H>) are operators such that

Sy (%2) = ) ar ® Dilxa).

z

The sum is taken over all finite sequences (4;,, . . ., 4;,) of basic generators of A(Z).

It turns out that there is a model of the Ao tensor product, namely the box tensor product, which
exactly corresponds to this geometric interpretation. See [LOT18, Section 2.4]. The pairing theorem
follows from this. More details may be found in Chapter 9 of [LOT18].

Remark 4.48. There is a more algebraic proof, using Sarkar and Wang’s nice diagrams [SW10]. Every
Heegaard diagram may be turned into a nice Heegaard diagram, and thus into a diagram whose type
A module is a genuine differential module (cf. Remark 4.23). Then the A« tensor product in Theo-
rem 4.44 coincides with the usual tensor product. Assuming all this, the proof for the pairing theorem
becomes quite simple. See [LOT18, Chapter 8] for more.
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