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The Arnol’d conjecture, roughly speaking, bounds the number of 1-periodic
trajectories of a certain kind of vector field on a symplectic manifold M by
a purely topological quantity, namely

∑
dimHk(M ;Z/2). It comes from a

generalization of Poincaré’s geometric theorem, which he discovered in 1912
while studying periodic solutions to certain problems in celestial mechanics.

In particular, Poincaré was studying a version of the three-body problem. In
this problem, two bodies orbit in a circle around their center of mass. A third,
significantly smaller body is introduced to this system and moves in some orbit
around the two existing bodies. This could be, for example, a satellite which
enters the Earth–Moon system. Poincaré wanted to show that this third body
could have periodic orbits.

To do so, he came up with a simple model for these problems, namely an
area-preserving map from the annulus to itself. He showed that there was a
bijection between the periodic solutions he wanted to find and fixed points of a
corresponding area-preserving homeomorphism of the annulus. By studying the
fixed points of such maps, he discovered the following theorem, which George
Birkhoff proved the following year.

Theorem 1 (Poincaré’s geometric theorem). Every area-preserving homeo-
morphism of the annulus S1 × [−1, 1] which rotates the boundary circles in
opposite directions has at least two fixed points.

Given this theorem, it is natural to attempt to find a generalization that
gives a lower bound on the number of fixed points of some collection of maps
with a given property.

As a first step in generalizing Poincaré’s geometric theorem, we can consider
maps on the torus. After all, we can decompose the torus into two circular
annuli which are joined by two connecting annuli, as shown in Figure 1.

Intuitively, then, Poincaré’s geometric theorem implies that a suitable dif-
feomorphism of the torus will have at least four fixed points. This is indeed the
case, subject to certain conditions. In particular, the following proposition is
true.

Proposition 2. Consider a symplectomorphism

(x, y) 7→ (x+ f(x, y), y + g(x, y)) = (X,Y )

which fixes the center of gravity in the sense that the average values of f and g
are zero as x and y range over S1. This map has at least four fixed points, with
multiplicity.
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Figure 1: The torus S1 × S1 can be constructed as two annuli con-
nected by a thin annulus (indicated by the equatorial lines) on each
boundary circle.

In particular, given any area-preserving homeomorphism of the annulus, we
can extend it to a diffeomorphism on the torus which preserves the center of
gravity. This diffeomorphism is equal to the original homeomorphism on each
of the two main annuli. It translates the two connecting annuli, but in opposite
directions. By choosing the magnitude of the translations, we can ensure that
the diffeomorphism preserves the center of gravity.

If we add an eigenvalue condition to Proposition 2, namely that −1 is not
an eigenvalue of the Jacobian at any point of the torus, then this follows from a
correspondence between fixed points of a symplectomorphism, which we define
below, and critical points of a corresponding function known as a Hamiltonian.
Without this eigenvalue condition, the proof runs into the same difficulties as
the original proof of Poincaré’s geometric theorem.

Proposition 2 uses a few definitions from symplectic geometry. In particular,
a (smooth) manifold M is a space which locally looks like Euclidean space Rn.
It can be thought of as a higher-dimensional analogue of curves (1-dimensional
manifolds) and surfaces (2-dimensional manifolds). A symplectic manifold is a
manifold M equipped with an additional structure, namely a symplectic struc-
ture. A symplectic structure is a closed 2-form ω such that ωx is nondegenerate
at every x ∈ M in the sense that, for every nonzero tangent vector X ∈ TxM ,
there is a Y with ωx(X,Y ) 6= 0.

As one example of a symplectic manifold, consider the Euclidean space R2n

with coordinates (p1, . . . , pn, q1, . . . , qn). Then the 2-form
∑
dqi ∧ dpi makes

R2n into a symplectic manifold.
A map f : M1 → M2 between two manifolds is a diffeomorphism if it is a

bijective smooth (i.e., infinitely differentiable) map whose inverse is also smooth.
The identity map on any smooth manifold is trivially a diffeomorphism. A
symplectomorphism between the symplectic manifolds (M1, ω1) and (M2, ω2) is
simply a diffeomorphism f : M1 →M2 which preserves the symplectic structures
in the sense that f∗ω2 = ω1. More explicitly, this means that

(ω2)f(x)(dfx(X), dfx(Y )) = (ω1)x(X,Y )

for every x ∈M1 and X,Y ∈ TxM1.
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Furthermore, it will turn out to be helpful to have the definition of a Hamil-
tonian vector field. In particular, if (M,ω) is a symplectic manifold and H :
M → R is a function, then we can form the Hamiltonian vector field XH as the
vector field satisfying the condition that

ωx(Y,XH(x)) = dHx(Y )

for every x ∈M and Y ∈ TxM . In the time-dependent case, we let H : M×R→
R be a function such that Xt = XHt

, where Ht(x) = H(x, t).
It turns out that Proposition 2 does, as a matter of fact, lead to the correct

generalization of Poincaré’s geometric theorem. As such, we must now find a
way to reformulate the condition that the symplectomorphism “preserves the
center of gravity.” The appropriate reformulation is that of being “exactly
homotopic to the identity,” which, in the case of the torus, is equivalent to the
notion of preserving the center of gravity.

In particular, let g : M → M be a symplectomorphism. Consider a smooth
time-dependent function H : M × R → R which is 1-periodic in the sense that
H(x, t) = H(x, t+ 1) for all (x, t) ∈M ×R. Then we say that g is generated by
H if g is equal to the time-1 flow of Xt. In other words, letting ψ be the flow
of Xt, so that ψ0 = idM and

d

dt
ψt = Xt(ψ

t),

we say that g is generated by H if then g = ψ1. If such an H exists, then we
say that g is exactly homotopic to the identity.

With all this new terminology, we can rephrase Proposition 2 as follows.

Proposition 2’. Let H : T × R → R be a 1-periodic time-dependent Hamilto-
nian on the torus. If g is generated by H, then it has at least four fixed points.

This proposition is generalized by Arnol’d’s conjecture, which gives a lower
bound on the number of fixed points that a symplectomorphism g on any mani-
fold can have, assuming that g is exactly homotopic to the identity. Notice that
a fixed point of g = ψ1 corresponds to a periodic solution of period 1 of the
Hamiltonian system, so it is equivalent to give a lower bound on the number of
1-periodic solutions to a Hamiltonian system.

In the simpler case that the function H is time-independent, we can find such
a lower bound. In particular, we can show that any critical point of H : M → R
is a 1-periodic solution, so that g has at least as many fixed points as H has
critical points.

After all, if x is a critical point of H, then dHx = 0 by definition. Let XH

is the Hamiltonian vector field associated with H. Now the nondegeneracy of
ω and the fact that

ωx(Y,XH(x)) = dHx(Y ) = 0

for all Y ∈ TxM together imply that XH(x) = 0. This is true if and only if
x lies on a constant trajectory. Since this trajectory is obviously periodic of
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any period, including of period 1, it follows that x corresponds to a periodic
solution of period 1, as desired. (And, in fact, it corresponds to a fixed point of
the symplectomorphism g given by ψ1, where ψ is the flow of XH .)

Thus we have shown the following.

Proposition 3. If H : M → R is a time-independent Hamiltonian and g is the
time-1 flow of XH , then

# fixed points of g ≥ # critical points of H.

In the time-dependent case, the corresponding result to this proposition is
unsolved. This is the Morse theoretic version of Arnol’d’s conjecture. Before we
state the conjecture, we must define a Morse function. In particular, a Morse
function f : M → R on M is a real-valued function whose critical points are

nondegenerate in the sense that the determinant of the Hessian matrix
(

∂2f
∂xi∂xj

)
is nonzero.

Conjecture 4 (Morse theoretic Arnol’d conjecture). Let (M,ω) be a compact
symplectic manifold and H : M ×R→ R be a time-dependent Hamiltonian. Let
Xt = XHt

be the (time-dependent) Hamiltonian vector field associated to H.
Suppose now that the 1-periodic solutions of the associated Hamiltonian system

ẋ(t) = Xt(x(t))

are nondegenerate in the sense that dψ1 does not have eigenvalue 1 at x. Then
the number of such 1-periodic solutions is at least the minimal number of critical
points which a Morse function on M can have.

The two ideas of nondegeneracy—first, as a critical point of the function
H, and second, as a periodic solution to the Hamiltonian system defined by
H—are, in fact, related. In particular, if a point x is nondegenerate in the
second sense, then it is nondegenerate in the first sense. This can be shown via
an explicit calculation involving Darboux’s theorem, which states that every
symplectic manifold is locally symplectomorphic to (R2n,

∑
dqi ∧ dpi), and the

order 2 Taylor expansion of H.
It turns out that, given a Morse function f on a manifoldM , we can construct

the Morse complex. In particular, let Ck = Z/2{Critk(f)}, where Critk(f) is
the set of critical points of f with index k. Then one can define a differential
∂ : Ck → Ck−1 making (C∗, ∂) a complex, known as the Morse complex. In
fact, one can show that the homology of the Morse complex doesn’t depend on
which Morse function f is picked and is the same as cellular homology.

From this, it follows that the number of critical points of a Morse function
on M is bounded below by the sum

∑
dimHk(M ;Z/2). After all, we know

that Hk(M ;Z/2) is a subquotient of Ck, and therefore has dimension at most
dimCk = #Critk(f). In fact, this leads to the statement of the homological
Arnol’d conjecture, which is weaker than the Morse theoretic Arnol’d conjecture
and which has, in fact, been proven.
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Theorem 5 (Homological Arnol’d conjecture). With the hypotheses from Con-
jecture 4, the number of 1-periodic solutions to the Hamiltonian system defined
by H is greater than or equal to the sum∑

k

dimHk(M ;Z/2).

In the case of the torus, this is equivalent to Proposition 2. After all,
the homology groups of a torus are H0(T ;Z/2) = Z/2 = H2(T ;Z/2) and
H1(T ;Z/2) = Z/2 ⊕ Z/2. Thus the sum of their dimensions is exactly 4, so
Theorem 5 implies that the number of fixed points of g, which is equal to the
number of 1-periodic solutions of the associated Hamiltonian system H ,is at
least

∑
dimHk(T ;Z/2) = 4.

The proof of the (homological) Arnol’d conjecture uses Floer theory. In
particular, on a certain infinite-dimensional space, we can define a the action
functional AH whose critical points are exactly the 1-periodic solutions to the
Hamiltonian system defined by H. Just as how the critical points of a Morse
function on M give rise to a chain complex, so too do the critical points of AH

allow us to construct an associated chain complex. (The hard part of this proof
is defining the differential and proving that it gives a complex.)

It turns out that the homology of this complex, known as the Floer homology,
is exactly equal to the Morse, and hence cellular, homology. Hence the number
of 1-periodic solutions is equal to the number of critical points of AH , which in
turn is at least

∑
dimHk(M ;Z/2), as desired.
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