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Many first-order ordinary differential equations can be written explicitly, i.e., as G(x, z) = z′(x). A
solution corresponds to a curve which is everywhere tangent to the associated slope field, which assigns a
line of slope G(x, z) to every point (x, z) ∈ R2. We call each such a vector a line element.

Observe that the line element of slope p0 at (x, z) corresponds to the kernel of the differential form

α = dz − p0dx.

To see this, simply note that kerα is simply the space spanned by

∂

∂x
+ p0

∂

∂z
,

which in turn corresponds to the line of slope p0.
Now consider the space of all line elements. One way to think of this space is by identifying the line

element of slope p at (x, z) to the point (x, z, p) ∈ R3. Note that since the slope is now variable (i.e., p is a
variable, not just x and z), the differential form α can be thought of as a 3-form over R3. In particular, set

ω = dz − pdx

and let ξ = kerω, as shown below.

Recall that we began with solutions to differential equations. Let z = z(x) be a function in x. More
generally than the explicit form G(x, z) = z′, we can write a first-order differential equation as F (x, z, z′) = 0
for some function F . Note that there is an associated curve to z(x) in our copy of R3, namely

x 7→ (x, z(x), z′(x)).

The tangent vector to this curve at any given point (x0, z(x0), z′(x0)) is contained in ξ at that point. In
particular, a solution to a differential equation corresponds to an integral curve of ξ.

Example 1. Consider the differential equation F : z′(x)−z(x) = 0. Its solutions are of the form z(x) = aex,
where a is any constant. Its associated curve is thus

γ : x 7→ (x, aex, aex).

The tangent vector is the vector corresponding to taking the derivative of each component, so

γ′(x) = (1, aex, aex).
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Note that the tangent vector lives in the tangent space, which has basis
{
∂
∂x ,

∂
∂z ,

∂
∂p

}
, so this means that

γ′(x) =
∂

∂x
+ aex

∂

∂z
+ aex

∂

∂p
.

At a given point γ(x0) = (x0, z0, p0) on this curve, we know that

(dz − pdx)γ(x0)(γ
′(x0)) = (dz − pdx)γ(x0)

(
∂

∂x

∣∣∣∣
γ(x0)

+ aex
∂

∂z

∣∣∣∣
γ(x0)

+ aex
∂

∂p

∣∣∣∣
γ(x0)

)

= (dz − p0dx)

(
∂

∂x

∣∣∣∣
γ(x0)

+ aex
∂

∂z

∣∣∣∣
γ(x0)

+ aex
∂

∂p

∣∣∣∣
γ(x0)

)
.

But recall that dz is 0 on ∂
∂x and ∂

∂p , and is 1 on ∂
∂z , and similarly for dx. Thus this is exactly equal to

p0dx

(
∂

∂x

)
+ dz

(
aex

∂

∂z

)
= −p0 + aex = 0,

since p0 = aex. Hence this curve is indeed an integral curve.

Example 2. The second example differential equation we will use is the closely related equation G : z′−zx =
0. Its solutions are of the form z(x) = aex

2/2, where a is again a constant. We can check that the tangent

vector of the associated curve δ : x 7→ (x, aex
2/2, axex

2/2) is

δ′(x) = (1, axex
2/2, aex

2/2(x2 + 1)).

Now for each point δ(x0), we can check that

(dz − pdx)(δ′(x0)) = dz

(
ax0e

x2
0/2

∂

∂z

)
− p0dx

(
∂

∂x

)
= ax0e

x2
0/2 − ax0ex

2
0/2 = 0.

(The general idea is that p0 = z′(x0) and the ∂
∂z term in the tangent vector is equal to z′(x0) as well, so

applying dz − pdx to the tangent vector will give us z′(x0)− z′(x0) = 0 for every point x0.)

Consider some diffeomorphism
f : (x, z, p) 7→ (X,Z, P )

of R3. Define a function F1, known as the transformed differential equation, which corresponds to F after
this diffeomorphism. In particular, define F1 so that

F1(X,Z, P ) = F (x, z, p).

This is equivalent to setting F1 to be the function with F1 ◦ f = F .
A solution to F as a differential equation would be z = z(x) so that F (x, z, z′) = 0. In particular, we set

p = z′(x). Restricting our attention to this case, we get a curve

f : (x, z(x), z′(x)) 7→ (X(x), Z(x), P (x)).

One natural question to ask is whether or not these transformed coordinates also satisfy the transformed
differential equation.

Recall that integral curves of ξ correspond to solutions, so if f preserves integral curves of dz − pdx,
it must also preserve solutions. It isn’t immediately obvious, however, what it means to “preserve integral
curves.” The following theorem make this idea formal and shows that it is, indeed, the correct intuition.

Theorem 3. Let f be a contact transformation, i.e., a map

f : (x, z, p) 7→ (X,Z, P )
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such that f takes integral curves of ker(dz− pdx) to integral curves of ker(dZ −PdX). Suppose x 7→ z(x) is
a solution to F (x, z, z′) = 0. Consider the transformed curve

x 7→ (X(x), Z(x), P (x)) := f(x, z(x), z′(x)).

If (X ′(x), Z ′(x)) 6= (0, 0) for all x, then Z(x) can be thought of as a function of X(x). The curve X 7→ Z(X)
is then a solution to the transformed equation

F1

(
X,Z,

dZ

dX

)
= 0.

Proof. Since γ : x 7→ (x, z(x), z′(x)) is an integral curve of ker(dz−pdx), we know that x 7→ (X(x), Z(x), P (x))
is an integral curve of ker(dZ − PdX). Hence we know, in particular, that

Z ′(x)− PX ′(x) = 0.

If X ′(x) = 0, then Z ′(x) = 0, contradicting our “regularity” condition that (X ′(x), Z ′(x)) 6= 0. Thus X ′(x)
is nonzero, and so the inverse function theorem implies that we can write x as a function x(X).

The chain rule implies that
dZ

dX
(X) =

dZ

dx
(x(X)) · dx

dX
(X).

Now note that X(x(X)) = X, and so X ′(x(X))x′(X) = 1. Hence it follows that

dx

dX
(X) =

1

X ′(x(X))
,

and so we find that
dZ

dX
(X) =

Z ′(x(X))

X ′(x(X))
= P (x(X)).

In other words, we know that X,Z, P have the same relationship that x, z, p had on the curve γ, namely
that p = z′(x). Hence it follows that

F1

(
X,Z,

dZ

dX

)
= F1(X,Z, P ) = F (x, z, z′) = 0,

as desired.

But exactly which functions f are contact transformations, anyway? They’re precisely those functions
which take vectors in ker(dz − pdx) to vectors in ker(dZ − PdX), and which take vectors of TR3 that are
not in ker(dz − pdx) to vectors not in ker(dZ − PdX).

Hence at each point, we must have dZ − PdX equal to some nonzero multiple of dz − pdx. (Note that
X,Z, P are not a different set of coordinates for R3 and are instead functions of the coordinates x, z, p of R3.
In particular, the differential form dZ − PdX is a 1-form with x, z, p as variables.) In other words, contact
transformations f : (x, z, p) 7→ (X,Z, P ) are exactly those functions such that there is a (smooth) nowhere
zero function g : R3 → R with

dZ − PdX = gdz − gpdx.

In fact, to more explicitly relate this function g to f , we can note that X = x ◦ f , where the function x
represents the x-coordinate of a point, and similarly for Z and P . Hence

dZ − PdX = d(z ◦ f)− (p ◦ f)d(x ◦ f),

which is precisely the pullback f∗(dz− pdx). This means that contact transformations are functions so that
there is a nowhere zero function g with

f∗(dz − pdx) = gdz − gpdx = g(dz − pdx).
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Example 4. Consider the function

f : (x, z, p) 7→ (p, px− z, x).

In this case, we know that
dZ − PdX = d(px− z)− xdp.

But because the differential respects addition/subtraction and follows the product rule, we know that

d(px− z) = pdx+ xdp− dz,

from which we conclude that
dZ − PdX = pdx− dz = −1(dz − pdx).

Hence this is a contact transformation.
Indeed, consider how f affects transformations to the differential equations in Examples 1 and 2. Recall

the definition of
F : z′ − z = 0.

The transformed equation would be

F1 : (xp− z)′ − (xp− z) = 0.

To see this, simply note that
F1(f(x, z, p)) = F1(p, px− z, x) = z′ − z,

which is exactly F . The solutions to F correspond to curves x 7→ (x, aex, aex). Using f , these transform to
curves x 7→ (aex, (x− 1)aex, x).

Now observe that, thinking of the z-coordinate as a function of the x-coordinate, we do in fact find that
the p-coordinate corresponds to the derivative:

∂(x− 1)aex

∂aex
= x.

Moreover, this curve corresponds to a solution to F1. This is because

(aexx− (x− 1)aex)′ − (aexx− (x− 1)aex) = (aex)′ − aex = 0.

We can do something similar with the differential equation G from Example 2. In particular, we end up
with the transformed equation

G1 : (xp− z)′ − p(xp− z) = 0.

A solution x 7→ (x, aex
2/2, axex

2/2) of G is mapped by f to the curve x 7→ (axex
2/2, ax2ex

2/2 − aex2/2, x).
Observe that, again, the p-coordinate is the derivative of the z-coordinate, with respect to the x-coordinate
axex

2/2. We can moreover verify that this curve solves G1. (In fact, the curve will always solve the
transformed equation; the nontrivial part, and the part which Theorem 3 shows, is that the P = Z ′(X), to
use our old notation.)

Example 5. For a more interesting example of a contact transformation, we begin with a geometric con-
struction. First, let γ : x 7→ (x, z(x)) be a curve in R2. Let δ be one of the two curves in R2 which lies
parallel to γ at a distance k > 0 away. Hence δ is given by X 7→ (X,Z(X)) with the requirements

(X − x)2 + (Z − z)2 = k2

(δ(X)− γ(x)) · γ′(x) = 0

δ′(X) = γ′(x).

The first two requirements basically say that δ is a distance k away from γ. (The · is the Euclidean dot
product.) The third requirement ensures that the slopes are the same, so the two curves are indeed parallel.
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Using our definitions of p = z′(x) and P = Z ′(X), and hence of (1, p) = γ′(x) and (1, P ) = δ′(X), we
can rewrite the conditions as follows:

(X − x)2 + (Z − z)2 = k2

X − x+ (Z − z)p = 0

P = p

We can solve this system (for example, by first solving for X − x, and then for Z − z) to get

X = x± kp√
1 + p2

, Z = z ± p√
1 + p2

,

where the ± comes from the fact that there were two options for δ.
Now observe1 that

dX = dx± d

(
kp√

1 + p2

)
= dx± k

(
√

1 + p2)3/2
dp.

Similarly, we find that

dZ = dz ± kp

(
√

1 + p2)3/2
dp,

from which we conclude that
dZ − PdX = dZ − pdX = dz − pdx.

Hence this function f , which corresponds to this shifting of a curve γ in R2, is a contact transformation.

Example 6. As a non-example of a contact transformation, consider the dilation

f : (x, z, p) 7→ (2x, 2z, 2p).

This would mean that
dZ − PdX = d(2z)− (2p)d(2x) = 2dz − 4pdx,

which is not always a constant multiple of dz − pdx.
To see how this non-contact transformation violates Theorem 3, consider the function G defined in

Example 2, namely
G : z′ − zx = 0.

The transformed differential equation G1 is thus given by

G1 :
z′

2
− zx

4
= 0.

Recall that solutions of G correspond to curves x 7→ (x, aex
2/2, axex

2/2). Applying f to these curves, we get

the transformed curves x 7→ (2x, 2aex
2/2, 2axex

2/2). If we could just replace z′ with the p-coordinate, these

curves would solve G1. However, writing X = 2x and hence 2aex
2/2 = 2aeX

2/8, we find that

d

dX
2aeX

2/8 =
1

2
aXeX

2/8 6= aXeX
2/8,

which is the p-coordinate in terms of X. To put it another way, the z-coordinate of the transformed curve
is z(x) = 2aex

2/2, which is not a solution to G1. This issue arises from the fact that, strictly speaking, the
transformed curve does not correspond to a solution to a differential equation, since the p-coordinate is not
z′(x).

1I may or may not have used Wolfram Alpha.
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This gives us some idea of why we might care about this differential form dz − pdx (or, more accurately,
about its kernel): A function which maps the integral curves of ker(dz− pdx) to integral curves of ker(dZ −
Pdx) maps solutions to solutions under the corresponding change of coordinates.

We call ker(dz − pdx) a standard contact structure. It lives in R3, but was created by looking at tangent
vectors in R2. When M = Rn and has coordinates (x1, . . . , xn−1, z), the standard contact structure lives in
R2n−1 = (x1, p1, . . . , xn−1, pn−1, z) and looks like ker(dz −

∑
pidxi).

In general, let M be a smooth n-manifold M . We can take a hyperplane (dimension n − 1 subspace of
the tangent space) Vp at each point p. Each such hyperplane is called a contact element (when M = R2,
we called these line elements), and the space of all (p, Vp) is called the space of contact elements. This is a
(2n − 1)-dimensional space and, it turns out, can be associated to the kernel of a differential form as well.
We call this kernel the natural contact structure on the space of contact elements.2

The modern definition of a contact structure has been abstracted from this geometric setting. We now
define a contact structure on (2n−1)-dimensional manifold M as the kernel of some 1-form α which satisfies
the condition that α ∧ (dα)n 6= 0 everywhere. Note that a contact structure can only be defined on odd-
dimensional spaces. This isn’t inconsistent with our earlier construction of a contact structure on R2 because
the contact structure itself actually lived in R3.

As a note, this definition is not actually equivalent to the definition of the geometric definition of a
natural contact structure, since there are many contact structures (in the modern definition) which cannot
be obtained by the contact element construction. In fact, part of why we call ker(dz − pdx) the standard
contact structure is because the differential form definition allows for other contact structures on R3.

Example 7. As an example of a nonstandard contact structure on R3, consider giving R3 cylindrical
coordinates (r, θ, z). Let β be the 1-form

β = cos r dz + r sin r dθ.

We can check that

β ∧ dβ =

(
1 +

sin r cos r

r

)
dV.

For any r > 0, however, we can check that 1 + sin r cos r
r is positive, and so kerβ is indeed a contact structure.

We can check that the planes of kerβ end up rotating along rays perpendicular to the z-axis, similarly to
ker(dz − pdx). However, whereas kerβ makes infinitely many full rotations, the standard contact structure
never fully rotates (which can be seen by the fact that p0 never reaches ∞). Thus we can at least intuitively
see that the two contact structures must be globally different.

That being said, the two contact structures still are very similar. As mentioned, both involve planes
rotating in rays perpendicular to the z-axis; the only difference is in how quickly they rotate. In fact, this
property of being locally very similar is not unique to the contact structures at all.

Theorem 8 (Darboux). Let M be any (2n − 1)-manifold and let ξ be some contact structure defined on
M . Fix some point p ∈ M . Moreover, let ξst be the standard contact structure on R2n−1. Then there exist
open neighborhoods U ⊆M of p and V ⊆ R2n−1 of the origin in R2n−1 such that there is a diffeomorphism
f : U → V such that df : ξ|U → ξst|V .

2Strictly speaking, the construction we went through does not allow for all hyperplanes (which are just tangent lines in the
R2 case). In particular, we only allowed for finite slope. If we allowed for any slope, we would end up looking at a contact
structure on R2 × PR, where PR is the real projective line.
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