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1 Introduction

The overarching goal of Morse theory is to use certain functions in order to understand what a
manifold looks like. One example of a so-called “Morse function” is a “height function” on a
manifold. The height function h : M → R on the torus M = S1 × S1 is shown in Figure 1.
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Figure 1: The height function on a torus.

Consider the four indicated points. Each of these are at a height where the sublevel set Ma =
h−1((−∞, a]) changes. For example, as h passes through p, the level set changes from being empty
to containing a single loop. As such the sublevel set changes from being the empty set to being a
point or a disk (which is “basically” a point, since we can continuously squish it down into a point).

At q, the set Ma changes from containing a disk to a cylinder. The level set h−1(a) “pinches”
itself and splits into two loops, but this pinching procedure isn’t a continuous deformation. Indeed,
a cylinder and a disk are fundamentally very different, and we can’t get from one to the other
simply by squishing them around.

The same thing happens as we pass r and s. In particular, at almost every point x, the sublevel
sets Mx−ε and Mx+ε look the same. But at the “critical values” of h(p), h(q), h(r), and h(s), the
sublevel sets suddenly change.

Since M = M∞, it follows that, if we can understand the critical points of h and if we can
understand how Ma changes as it crosses each critical point, then we effectively “understand” the
manifold M . This is guiding principle of Morse theory: The critical points of a well-chosen function
f : M → R help us understand the topology of M .
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In this writeup, we will first discuss what a “well-chosen function” is. Then we will analyze in
a bit more depth exactly what happens as we pass through each critical point of h. This will lead
us to a definition of homotopy and CW complexes, and our guiding example of the height function
on the torus will suggest a connection between any manifold M and a specific CW complex which
can be defined using the critical points of a so-called Morse function on M .

2 Critical values and Morse functions

The points p, q, r, and s in Figure 1 are called critical points of h.
To explain why, let’s briefly consider a smooth function f : R→ R. In this case, a critical point

is just a point p where the derivative f ′(p) = 0. At each critical point p, we can look at the sign
of f ′′(p) to see if p is a local minimum or maximum. In particular, if f ′′(p) > 0, then p is a local
minimum. If f ′′(p) < 0, then p is a local maximum. And if f ′′(p) = 0, then this “second derivative
test” is inconclusive, and p is usually (but not always) an inflection point.

In this last case, we could call p a degenerate critical point, since the second derivative doesn’t
give us any helpful information. In contrast, the points where f ′′(p) 6= 0 are nondegenerate, and
we can understand their behavior by looking at their second derivative.

We can do the same thing in n dimensions. In particular, suppose M is an n-dimensional
manifold, and suppose f : M → R is smooth. (Here, as with elsewhere in this write-up, we use
“smooth” to mean “infinitely differentiable.”) Then the previous discussion suggests that we define
a critical point of f as a point p ∈ M if the differential df : TpM → Tf(p)R is zero. If we consider

some local coordinates (x1, . . . , xn) of M , then TpM can be given the coordinates ∂
∂xi

∣∣
p
. Thus x is

a critical point if and only if
∂f

∂x1

∣∣∣∣
p

= · · · = ∂f

∂xn

∣∣∣∣
p

= 0.

If p is a critical point, then we call f(p) ∈ R a critical value of f .
Similarly, we can use a “second derivative test” to differentiate between degenerate and nonde-

generate critical points. In this case, we form a matrix

H :=

(
∂2f

∂xi∂xj
(p)

)
=



∂2f
∂x1∂x1

(p) ∂2f
∂x1∂x2

(p) . . . ∂2f
∂x1∂xn

(p)

∂2f
∂x2∂x1

(p) ∂2f
∂x2∂x2

(p) . . . ∂2f
∂x2∂xn

(p)

...
...

. . .
...

∂2f
∂xn∂x1

(p) ∂2f
∂xn∂x2

(p) . . . ∂2f
∂xn∂xn (p)


.

It turns out that if this matrix, known as the Hessian, is invertible, then its eigenvalues determine
whether or not p is a minimum, maximum, or saddle point. Thus we call it nondegenerate, since
its behavior can be understood by looking at the second partial derivatives. If H is noninvertible,
however, we call p a degenerate critical point.

Note that this coincides with our definition when M = R. After all, for f : R→ R, the Hessian

is singular exactly when the second derivative d2f
dx2

= 0.
One nice property of the Hessian is that it is symmetric, since

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.
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Symmetric matrices are particularly useful because they give rise to symmetric bilinear forms. In
particular, if A is symmetric, then we can define

Q(v, w) = vTAw.

We denote the bilinear form corresponding to the Hessian H of f as f∗∗. (Note that this is a
slight abuse of notation, since H also depends on p.) To put this all into coordinates, suppose that
v =

∑
ai

∂
∂xi

∣∣
p

and w =
∑
bj

∂
∂xj

∣∣
p
. Then we have

f∗∗(v, w) = vTHw =
∑
ij

aibj
∂2f

∂xi∂xj
(p).

The bilinear form f∗∗ has an index and a nullity: We define its index to be the dimension of
the subspace of TpM on which f∗∗ is negative definite. Its nullity is the dimension of its null space,
that is, the subspace of vectors v so that f∗∗(v, w) = 0 for all w ∈ TpM .

At a critical point p, note that the nullity is nonzero if and only if p is degenerate. After all,
a tangent vector v is in the null space if and only if Hv = 0. If H is not invertible, i.e., if p is
degenerate, then we can find a nontrivial vector v satisfying Hv = 0; otherwise, the only vector v
with Hv = 0 is H−1(0) = 0.

It turns out that the behavior of f near a nondegenerate critical point is entirely determined
by its index at that point (or, more accurately, by the index of f∗∗ at that point). In particular,
we have the following theorem.

Theorem 2.1 (Morse Lemma). Let p be a nondegenerate critical point for f . Then there is a local
coordinate system (y1, . . . , yn) in a neighborhood U of p with yi(p) = 0 for all i and such that the
identity

f = f(p)− (y1)2 − · · · − (yλ)2 + (yλ+1)2 + · · ·+ (yn)2 (1)

holds throughout U , where λ is the index of f at p.

To prove this, we will first need a technical lemma.

Lemma 2.2. Let f be a smooth function in a convex neighborhood V of 0 in Rn, with f(0) = 0.
Then there exist some smooth functions gi defined on V such that

f(x1, . . . , xn) =
n∑
i=1

xigi(x
1, . . . , xn) (2)

and gi(0) = ∂f
∂xi

(0).

Proof. Notice that

f(x1, . . . , xn) =

∫ 1

0

df(tx1, . . . , txn)

dt
dt.

But we know by the chain rule that

df(tx1, . . . , txn)

dt
=

n∑
i=1

∂f

∂xi
(tx1, . . . , txn) · xi dt.

This implies that we can simply define

gi(x
1, . . . , xn) =

∫ 1

0

∂f

∂xi
(tx1, . . . , txn) · xi dt.
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With this lemma, we can now prove the Morse Lemma.

Proof of Theorem 2.1. We will first show that if there are coordinates (z1, . . . , zn) which satisfy
Equation (1), then λ must be the index of f at p.

Intuitively, this makes sense: Thus, the first λ coordinates z1, . . . , zλ are “responsible” for all
the “negative behavior” (which corresponds to the index) of the Hessian.

Indeed, taking the second derivative ∂2f
∂zi∂zj

, we see that it is negative if and only if i = j ≤ λ.
In particular, we have

∂2f

∂zi∂zj


−2 if i = j ≤ λ,
2 if i = j > λ,

0 if i 6= j.

Hence the Hessian with respect to the basis ∂f
∂zi

is exactly

−2
. . .

−2

0

0
2

. . .

2


.

This gives a subspace of dimension λ on which the Hessian is negative definite, since there are
exactly λ negative eigenvalues (with multiplicity). Hence the index is at least λ.

Similarly, there is a subspace of dimension n−λ on which the Hessian is positive definite. Thus
λ is as large as possible, and so the index is exactly λ.

Now we must show that there does, in fact, exist a coordinate system (y1, . . . , yn) satisfying the
equation. We will begin with a coordinate system (x1, . . . , xn) and show that (y1, . . . , yn) can be
obtained via a nonsingular linear transformation.

Translation implies that we can suppose without loss of generality that p is the origin of Rn =
(x1, . . . , xn) and that f(p) = 0. We can thus apply Lemma 2.2 and rewrite f as

f(x1, . . . , xn) =

n∑
j=1

xjgj(x
1, . . . , xn),

where gj(0) = ∂f
∂xj

(0). But since 0 = p is a critical point, we know that all of the partial derivatives
are equal to 0, so gj(0) = 0.

Thus we can apply Lemma 2.2 to each gj , which gives us smooth functions hij such that

gj(x
1, . . . , xn) =

n∑
i=1

xihij(x
1, . . . , xn)

and hij(0) =
∂gj
∂xi

(0). Returning to f , we can thus say that

f(x1, . . . , xn) =

n∑
i,j=1

xixjhij(x
1, . . . , xn),

where each hij satisfies

hij(0) =
∂gj
∂xi

(0) =
∂2f

∂xi∂xj
(0).
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Note that hij(0) = hji(0) for all i, j. In fact, it turns out that we can assume more generally
that hij = hji. In particular, if hij 6= hji, then let h̄ij = 1

2(hij +hji) = h̄ji. Moreover, we can verify
that f =

∑
xixj h̄ij . Finally, since

h̄ij(0) =
1

2
(hij(0) + hji(0)) =

1

2

(
∂2f

∂xi∂xj
(0) +

∂2f

∂xj∂xi
(0)

)
=

∂2f

∂xi∂xj
(0),

we know that we could’ve just chosen h̄ij for hij in the first place. Thus we can assume that
hij = hji for all i and j.

To prove that we can express the region near 0 as specified by Equation (1), we will perform
induction. In particular, we will assume that we have some neighborhood U of 0 on which we have

f = ±(u1)2 ± · · · ± (ur−1)2 +
∑
i,j≥r

uiujHij(u
1, . . . , un),

where Hij = Hji. This hypothesis holds when r = 1 thanks to our symmetry assumption on hij .
Now the goal is to find some new coordinates which do not affect u1, . . . , ur−1, but will help us

isolate (ur)2. To do so, we must first check that we can ensure that Hrr is nonzero near 0.
Indeed, there exists a change of the last n− r + 1 coordinates so that Hrr(0) 6= 0. After all, if

this weren’t the case, then we would have Hij(0) = 0 for all i, j ≥ r. But this would imply that
0 were a degenerate critical point of f . This is because the entries of its Hessian would be zero at
every coordinate (i, j) if i, j ≥ r, and so the Hessian would be singular.

Thus we without loss of generality suppose that the coordinates are such that Hrr 6= 0. The
only Hij ’s that we want to change are where at least one of i, j is r. Thus we’ll try to only change
the ur coordinate, say to vr. Then our goal is to write f as

f =
∑
i≤r
±(vi)2 +

∑
i,j>r

vivjH ′ij(v
1, . . . , vn)

for some functions vi = vi(u1, . . . , un).
Since we want the coefficient of (vr)2, it makes sense to define the function g(u1, . . . , un) as

g(u1, . . . , un) =
√
|Hrr(u1, . . . , un)|.

Then we might want to define vr = gur, so that (vr)2 = ±(ur)2Hrr(u
1, . . . , un).

But such a definition does not allow us to somehow get rid of the coefficients of vivr (or,
symmetrically, of vrvj). Thus we would actually like to find some function h(u1, . . . , un) so that
vr = gur + h works by allowing us to cancel the extra terms obtained in (vr)2 with the terms in
vivr = uivr for i > r. In fact, because we know that h should probably include a term for each uj ,
we can write it as

∑
ujhj , where j > r.

In this case, we have

(vr)2 = ±(ur)2Hrr + 2
√
|Hrr|ur

∑
i>r

uihi +

(∑
i>r

uihi

)2

,

vivr = uiur
√
|Hrr|+

∑
j>r

uiujhj .

To get the urui terms to cancel out, we need

Hrr

√
|Hrr|hi = Hir

√
|Hrr|,
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and so we simply need hi = Hir
Hrr

. (Note that the factor of 2 drops out because vivr = vrvi.)
Indeed, we can check that these coordinates work, and so induction implies that we can write

f =
∑
±(vi)2.

The Morse Lemma tells us, in effect, that nondegenerate critical points locally look quadratic
and are entirely determined by the index.

In the next couple sections, we will show that the topology of a space M is defined by the
critical values of a so-called Morse function f : M → R. A Morse function on M is a smooth
real-valued function on M such that none of its critical points are degenerate and if p, q are critical,
then f(p) 6= f(q).

The first condition means that we can use the Morse lemma to fully understand the behavior
near each critical point. And since, as we will see, the topology of M only ever “changes” when
crossing a critical point, the second condition lets us understand these changes without having
them potentially influence one another.

Before we continue, it is worth noting that any smooth manifold admits a Morse function (and,
indeed, uncountably many Morse functions!). We won’t show this here, but the idea is to embed
M into Rn. This can always be done, as long as n is sufficiently large. Then let Lp : M → R be
defined as Lp(q) = |p− q|2. (Note that the height function of the torus is just a particular example
of such a function!) It turns out that, for almost every p, this function Lp has no degenerate critical
points.

3 Morse functions and topology

In this section, we will discuss a particular kind of topological equivalence, namely homotopic
equivalence. Intuitively, two objects are homotopic if there is some “continuous deformation”
taking one to the other.

Formally, we say that two functions f, g : X → Y are homotopic, and write f ' g, if there
is a continuous function H : X × [0, 1] → Y such that H(x, 0) = f(x) and H(x, 1) = g(x). We
usually think of the first parameter of H as representing “space,” while the second parameter
represents“time.” In other words, we think of H as a continuous way to start at f and end at g.

One example of a homotopy is the straight-line homotopy, which is defined by letting H(x, t) =
(1 − t)f(x) + tg(x). If X = [0, 1], then we can visualize f and g as curves. Figure 2 shows an
example of the straight-line homotopy in this case.

Figure 2: A straight-line homotopy between f : [0, 1] → R2 and g : [0, 1] → R2 effectively
deforms f into g by pulling each f(x) along the straight line toward g(x).
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Two spaces X and Y are homotopy equivalent, and have the same homotopy type, if there exist
functions f : X → Y and g : Y → X such that g ◦ f ' idX and f ◦ g ' idY . If X is homotopy
equivalent to a point, then we call it contractible, because we are basically able to contract it into
a point.

One special case of homotopy equivalent spaces occurs when one is a deformation retract of
another. If Y ⊆ X, then a deformation retraction of X onto Y is a function F : X × [0, 1] → X
such that

F (x, 0) = x, F (x, 1) ∈ Y, F (y, 1) = y,

where x ∈ X and y ∈ Y . If such a function exists, then we call Y a deformation retract of X.
The types of homotopy equivalences which we are concerned with are mostly all deformation

retracts, which should simply be thought of as continuous contractions of X onto a subspace Y .
In general, we won’t need to use the formal definitions of homotopies and deformation retracts in
this write-up, and we’ll just rely on this intuitive definition.

The reason we care about homotopy equivalence is because critical points turn out to tell us a
lot about the homotopy type of a shape. Using the height function of the torus again, we start out
with the empty set.

As we cross the point p, the sublevel set f−1((−∞, a]) becomes a disk, or, when a = h(p), a
single point. In fact, a disk is contractible. This can either be seen by by simply observing that a
disk can be shrunk down to its center point, or by explicitly constructing the straight-line homotopy
between a disk D and its center point 0.

The straight-line homotopy is achieved by letting f : D → {0} be the function taking every point
to 0, and g : {0} → D be the inclusion map. Obviously f ◦ g is the identity, and thus is homotopic
to the identity on {0}. But g ◦ f is homotopic to the identity (on D) as well, which we can see by
considering the map H(x, t) = (1− t)x. We have H(x, 0) = x = idD(x) and H(x, 1) = 0 = g ◦ f(x).

Thus we see that we have effectively changed from the empty set to a point. In fact, we should
think of this as attaching a point, or adding a point to the previous homotopy type, which happened
to be the empty set.

When we pass q, the sublevel set becomes a cylinder. Note that a cylinder can be continuously
compressed into a circle, but a circle cannot contract to a point, so the cylinder is not homotopy
equivalent to the disk. In fact, in this case, the best way to think of the cylinder is as attaching a
“handle” to the disk we already have, as illustrated in the second row of Figure 3.

Indeed, whenever we pass a critical point, the homotopy type of the sublevel set Ma changes
by attaching some shape. In fact, each time, we seem to attach some k-cell, that is, some shape
homeomorphic to a k-dimensional rectangle [a1, b1]× · · · × [ak, bk]. This dimension k turns out to
be exactly equal to the index λ.

We will first show that the homotopy type of Ma change when a does not pass through a critical
value of f . We will then show that passing through a critical value of index λ has the effect of
attaching a cell of dimension λ.

Proposition 3.1. Let f : M → R be smooth. Suppose now that a < b. Suppose moreover that
f−1([a, b]) is compact, and contains no critical points of f . Then Ma is diffeomorphic to M b.

Proof. The idea behind this proof is to construct a family of diffeomorphisms ϕt : M →M so that
ϕb−a induces a diffeomorphism from Ma to M b. Intuitively, the diffeomorphism ϕt will push M b

down onto M b−t by moving perpendicular to the level sets of f .
To construct the family of diffeomorphisms, we use the gradient ∇f of f . The gradient is a

vector field on M , that is, it attaches a vector ∇f(p) to each point p of M . It acts very similarly
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Figure 3: The homotopy type changes as we move across each critical point.

to the gradient in regular multivariable calculus. In particular, the gradient at p is orthogonal to
the level set f(x) = f(p) at noncritical points p, and vanishes at critical points.

Thus it makes sense to consider the vector field ∇f , and then to consider diffeomorphisms
which follows the trajectories of ∇f at each point p. But these “diffeomorphisms which follow
the trajectories of a vector field” can only be defined if the vector field vanishes outside of some
compact set.

We can get around this difficulty by scaling ∇f . In particular, define λ : M → R to be equal
to 1/〈∇fp,∇fp〉 for p ∈ f−1([a, b]), and to vanish outside a compact neighborhood K of this set.
This is possible because f−1([a, b]) is compact. (Note that the definition of λ on f−1([a, b]) arises
from the fact that we want the vectors of our scaled gradient to all be unit vectors. Note further
that we never divide by zero because of the hypothesis that f−1([a, b]) contains no critical points.)

Hence define the vector field X : M → TpM by

X : p 7→ Xp := λ(p)∇fp.

By definition, this vanishes outside of the compact set K.
The diffeomorphisms in question are created by looking at all t for any given p. For each p ∈M ,

let ϕ(t, p) be the function in t defined by

∂ϕ(t, p)

∂t
= Xϕ(t,p) (3)

with initial condition ϕ(0, p) = p. This can be done because it is known that ordinary differential
equations locally have unique solutions, say for t ∈ Up = (−εp, εp).

We can do this for each p. Since K is compact, there exist finitely many Up which cover K.
Thus let ε0 be the smallest of these εp’s. Then by setting ϕ(t, p) = 0 for all p 6∈ K, it follows that
we have a unique solution to Equation (3), at least for |t| < ε.
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Suppose |t| ≥ ε. If t is positive, then write t = k · ε2 + r, where k ∈ N and |r| < ε
2 . Then define

ϕ(t, p) = ϕ
(ε

2
, p
)
◦ · · · ◦ ϕ

(ε
2
, p
)
◦ ϕ(r, p),

where ϕ( ε2 , p) is repeated k times. If t is negative, do the same thing with − ε
2 .

Note that ϕ(t, p) has thus been defined so that ϕ(t, p) ◦ ϕ(s, p) = ϕ(t+ s, p) for every t, s ∈ R.
Thus we now have a family of diffeomorphisms

ϕt : p 7→ ϕ(t, p)

where t ∈ R which satisfies the property that

ϕt ◦ ϕs = ϕt+s.

Such a family is known as a 1-parameter group of diffeomorphisms.
We claim that ϕb−a is a diffeomorphism which takes M b to Ma. To do so, we will show that

the map t 7→ f(ϕt(p)) is a linear map with derivative 1 for any fixed p, as long as f(ϕt(p)) ∈ [a, b].
This follows from the fact that the dot product of ∇fp and some tangent vector v is exactly equal
to the directional derivative of f along v. In particular, this gives us

df(ϕt(p))

dt
=

〈
dϕt(p)

dt
,∇fp

〉
= 〈Xp,∇fp〉 = 1,

as long as ϕt(p) ∈ f−1([a, b]). This shows that Ma and M b are diffeomorphic.

Remark 3.2. It turns out that, by “moving through” the diffeomorphisms ϕt, we can actually
construct a deformation retraction from M b to Ma.

This means that the only points at which the manifold Ma can change are critical points. In
fact, the following proposition characterizes how Ma changes across a critical point.

Proposition 3.3. As before, let f : M → R be smooth. Suppose q is a nondegenerate critical point
of f with index λ, and define c = f(q). Suppose there exists some ε0 > 0 so that f−1([c−ε0, c+ε0])
is compact and contains no critical point besides p. Then, for all sufficiently small ε, the sublevel
set M c+ε has the homotopy type as M c−ε with a λ-cell attached.

Note that if Proposition 3.3 can be applied to every critical point of a Morse function, then the
critical points of f correspond to distinct critical values, and the critical values cannot have any
accumulation points.

Proof. The goal will be to create an auxiliary function F : M → R which differs from f only in
a small neighborhood near q. It will be defined so that F−1((−∞, c − ε]) consists of M c−ε, along
with some region H containing p.

We will show that there is a λ-cell eλ ⊆ H so that M c−ε ∪ eλ can be attained by continuously
deforming M c−ε ∪H, and hence is homotopy equivalent to M c−ε ∪H. Then we will apply Propo-
sition 3.1 to the function F to show that M c−ε ∪H and M c+ε are homotopy equivalent, which will
complete the proof. As an example on the solid torus, consider Figure 4.

Since we’ll be working only near p, we can use (u1, . . . , un) as the coordinate system of some
neighborhood U of p from Theorem 2.1. Thus

f = c− (u1)2 − · · · − (uλ)2 + (uλ+1)2 + · · ·+ (un)2
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Figure 4: On the torus, the argument will roughly be to push M c+ε to M c−ε ∪H, and then
to squeeze the yellow area H into a single pink λ-cell eλ.

on U . Observe that the critical point itself has coordinates ui = 0.
It will be convenient to define the functions ξ, η : U → [0,∞) as

ξ = (u1)2 + · · ·+ (uλ)2

η = (uλ+1)2 + · · ·+ (un)2.

With this definition, we can rewrite f as

f = c− ξ + η.

One way to visualize our current coordinate setup is to imagine having two axes, one representing
the coordinates u1, . . . , uλ, and the other representing the coordinates uλ+1, . . . , un. Then the level
sets look like hyperbolas in this two-dimensional rendering thanks to the quadratic form of U . This
is shown in Figure 5.

Now choose ε < ε0 so that the image of U under the coordinate map

(u1, . . . , un) : U → Rn

contains the closed ball
{(u1, . . . , un) :

∑
(ui)2 ≤ 2ε}.

(The reasoning for this extra condition is simply that our definition of F will require a “bump”
function µ which is flat everywhere outside this ball; thus we need this ball to be contained inside
U so that we can use the coordinate system defined by the ui’s.) This is shown in Figure 6. We
claim that, for any such ε, the conclusion of this proposition holds.

Now recall that we would like to find a smooth function F so that F (p) < c−ε, but F−1((−∞, c+
ε]) = M c+ε, where ε > 0 is suitably small. One way to do this is to define some “perturbation
function” which is greater than ε at the point q and which gradually decreases away from q.

It turns out that, for each ε > 0, there exists a smooth function µ : R→ R such that

µ(0) > ε

µ(r) = 0 for r ≥ 2ε

µ′(r) ∈ (−1, 0] for all r.
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Figure 5: A schematic of the coordinate setup. Note that f = c−ξ+η implies, for example,
that the intersection of the f = c− ε hyperbola and the (u1, . . . , uλ)-axis is the set of points
with ξ = ε, as indicated by the green point.

Figure 6: The purple ball intersects the (u1, . . . , uλ)-axis where ξ = 2ε. Our condition
simply says that the ball is contained in our coordinate system.
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The existence of such a function is nontrivial, but since it relies on some other machinery, we will
simply take this fact for granted. Note that the 2ε in the second condition can’t be replaced by
ε, for example, since that would violate the third condition, which is what forces µ to decrease
relatively gradually.

Now define F to coincide with f outside of U , and to be equal to

F (p) = f(p)− µ((u1)2 + · · ·+ (uλ)2 + 2(uλ+1)2 + · · ·+ 2(un)2)

= c− ξ + η − µ(ξ + 2η).

The reason, intuitively, as to why we choose the input of µ to be ξ+2η is twofold: On one hand, we
need the input of µ to grow when the distance from the origin grows, since we need the perturbation
factor to be small anywhere far away from the origin (which is p). And on the other hand, we still
want to maintain some kind of “imbalance” between ξ and µ in the input, since this will help
achieve the imbalance between F−1((−∞, c− ε]) and F−1((−∞, c+ ε]).

We will show that F has the necessary properties to make it behave “like f .” The important
properties of F , in particular, will be that F−1((−∞, c + ε]) = M c+ε and that F has exactly the
same critical points as f .

We begin by showing that F−1((−∞, c+ε]) is equal to M c+ε = f−1((−∞, c+ε]). If p 6∈ U , then
f and F are defined to be equal. Otherwise, if ξ + 2η ≥ 2ε, then we know that the perturbation
factor µ is equal to 0, and so F = f in this case. Otherwise, suppose ξ + 2η < 2ε at some point p.
We claim that f(p), F (p) ≤ c + ε, so that p is contained in both F−1((−∞, c + ε]) and M c+ε. To
see this, recall that F (p) ≤ f(p) since µ is nonnegative when ξ + 2η < 2ε. Hence we have

F (p) ≤ f(p) = c− ξ + η ≤ c+
1

2
ξ + η < c+ ε,

which proves that the sublevel sets of f and F are the same at c+ ε.
To show that F and f have the same critical points, note that, as before, we can assume that

p has ξ + 2η < 2ε. Note that p is a critical point if and only if the total derivative dFp = 0. But
we also know that

dF =
∂F

∂ξ
dξ +

∂F

∂η
dη.

Recalling that F = c− ξ + η − µ(ξ + 2η), we can evaluate the partial derivatives as

∂F

∂ξ
= −1− µ′(ξ + 2η) ∈ [−1, 0)

∂F

∂η
= 1− 2µ′(ξ + 2η) ∈ [1, 3).

In particular, neither partial derivative is ever 0. Thus dF = 0 implies that dξ = dη = 0 at p. But
this is only possible if ui = 0 for each i. Since the origin of the (u1, . . . , un)-coordinate system is
just q, this means that q is the only critical point of F with ξ + 2η < 2ε. This proves that F and
f have the same critical points.

This means that Proposition 3.1 is applicable to the region F−1([c− ε, c+ ε]). To see this, note
that F ≤ f and the fact that F−1((−∞, c+ ε]) = M c+ε imply that

F−1([c− ε, c+ ε]) ⊆ f−1([c− ε, c+ ε]).

But the only critical point in f−1([c − ε, c + ε]) is p, and F (p) < c − ε, and so it follows that
F−1([c− ε, c+ ε]) cannot contain any critical points. Not furthermore that f−1([c− ε, c+ ε]) being
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compact and F−1([c − ε, c + ε]) being a closed subset implies that the latter set is also compact.
Thus we can apply Proposition 3.1.

In other words, we conclude that M c+ε and F−1((−∞, c−ε]) are diffeomorphic, hence homotopy
equivalent. For convenience, we write F−1((−∞, c − ε]) = M c−ε ∪ H, where H is the closure of
F−1((−∞, c− ε]) \M c−ε. This H is exactly the H mentioned at the beginning of this proof.

As such, we now will show that there is a λ-cell eλ ⊂ H such that M c−ε ∪ eλ is homotopy
equivalent to M c−ε ∪H = F−1((−∞, c− ε]). Since we already showed that this last expression is
homotopy equivalent to M c+ε, this will complete the proof.

Figure 7: The handle H contains the cell eλ. The set between the orange and light gray
hyperbolas is F−1([c−ε, c+ε]). Moreover, the two areas bounded by the dark gray f = c−ε
hyperbolas make up M c−ε, so eλ is connected to M c−ε as expected.

In fact, we can use the diagram shown in Figure 7 Note that the pink line eλ is indeed λ-cell
since the “x-axis” is really a λ-dimensional axis. Moreover, the diagram suggests that the cell we
want is simply the set of points q with

ξ(q) ≤ ε, η(q) = 0.

Indeed, this cell is always contained in H. To see this, suppose q ∈ eλ. Then we must show that
F (q) ≤ c− ε, but f(q) ≥ c− ε. The latter inequality follows from the fact that

f(q) = c− ξ(q) + η(q) ≥ c− ε.

The former follows from the fact that ξ(q) ≥ 0 = ξ(p). After all, since ∂F
∂ξ < 0, it follows that

F (q) ≤ F (p) < c− ε.

Thus eλ ⊂ H.
This brings us to the final part of the proof: showing that eλ is a suitable choice of λ-cell, i.e.,

that M c−ε ∪ eλ is a deformation retract of, and hence homotopy equivalent to, the set M c−ε ∪H =
F−1((−∞, c− ε]).

The deformation retraction is illustrated in Figure 8. Effectively, the red region gets pushed
vertically onto the pink cell eλ, the green region is pushed vertically onto a segment of the hyperbola
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Figure 8: There are three cases for the deformation retraction, which will compress the
shape to contain only the blue and pink areas.

f = c − ε, and the blue region (as well as any point of M c−ε ∪ H which is not contained in U)
doesn’t move at all.

Note that the three regions correspond to ξ ≤ ε, ε ≤ ξ ≤ ε+ η, and ε+ η ≤ ξ, respectively. We
will define functions rt for t ∈ [0, 1] so that the function r : M c−ε ∪H × [0, 1] → M c−ε ∪H which
takes (q, t) to rt(q) is the desired deformation retract.

In the first case, we will perform a straight-line homotopy, defined by

rt : (u1, . . . , un) 7→ (u1, . . . , uλ, (1− t)uλ−1, . . . , (1− t)un).

In the second case, we will do another straight-line homotopy, but this time stopping at the hyper-
bola. It turns out that we can define rt in this region to be

rt : (u1, . . . , un) 7→ (u1, . . . , uλ, stu
λ+1, . . . , stu

n),

where st = (1− t) + t
√

ξ−ε
η . This definition simply comes from the fact that we want s1 to satisfy

f(u1, . . . , uλ, s1u
λ+1, . . . , s1u

n) = c− ε,

i.e., that, if we let q = (u1, . . . , un), then we need

c− ξ(q) + s21η(q) = c− ε.

Finally, for the third case, we define rt to be the identity. Since continuous maps can just be glued
together, and since the definitions coincide at the intersections of any two cases, it follows that r
gives a deformation retraction from M c−ε ∪H to M c−ε ∪ eλ, thus concluding the proof.

As might be supposed from Propositions 3.1 and 3.3, this lets us find the homotopy type of any
sublevel set.

Theorem 3.4. Suppose f : M → R is a Morse function, that is, a smooth function with no
nondegenerate critical points. If Ma is compact for each a, then M has the homotopy type of the
manifold which has a cell of dimension λ for each critical point of index λ.

We won’t prove this theorem, since the proof is surprisingly tricky, since some work remains if
we have infinitely many critical points. That being said, we’ve already proved the main ideas in
the previous propositions!

As a final remark, note that Theorem 3.4 does not actually say how the cells are attached.

14


	Introduction
	Critical values and Morse functions
	Morse functions and topology

